Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Biochemistry (Mosc) ; 89(2): 279-298, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38622096

RESUMO

An increase in mitochondrial DNA (mtDNA) mutations and an ensuing increase in mitochondrial reactive oxygen species (ROS) production have been suggested to be a cause of the aging process ("the mitochondrial hypothesis of aging"). In agreement with this, mtDNA-mutator mice accumulate a large amount of mtDNA mutations, giving rise to defective mitochondria and an accelerated aging phenotype. However, incongruously, the rates of ROS production in mtDNA mutator mitochondria have generally earlier been reported to be lower - not higher - than in wildtype, thus apparently invalidating the "mitochondrial hypothesis of aging". We have here re-examined ROS production rates in mtDNA-mutator mice mitochondria. Using traditional conditions for measuring ROS (succinate in the absence of rotenone), we indeed found lower ROS in the mtDNA-mutator mitochondria compared to wildtype. This ROS mainly results from reverse electron flow driven by the membrane potential, but the membrane potential reached in the isolated mtDNA-mutator mitochondria was 33 mV lower than that in wildtype mitochondria, due to the feedback inhibition of succinate oxidation by oxaloacetate, and to a lower oxidative capacity in the mtDNA-mutator mice, explaining the lower ROS production. In contrast, in normal forward electron flow systems (pyruvate (or glutamate) + malate or palmitoyl-CoA + carnitine), mitochondrial ROS production was higher in the mtDNA-mutator mitochondria. Particularly, even during active oxidative phosphorylation (as would be ongoing physiologically), higher ROS rates were seen in the mtDNA-mutator mitochondria than in wildtype. Thus, when examined under physiological conditions, mitochondrial ROS production rates are indeed increased in mtDNA-mutator mitochondria. While this does not prove the validity of the mitochondrial hypothesis of aging, it may no longer be said to be negated in this respect. This paper is dedicated to the memory of Professor Vladimir P. Skulachev.


Assuntos
DNA Mitocondrial , Mitocôndrias , Camundongos , Animais , DNA Mitocondrial/genética , Espécies Reativas de Oxigênio , Mitocôndrias/genética , Envelhecimento/genética , Mutação , Succinatos
2.
Am J Physiol Endocrinol Metab ; 312(1): E72-E87, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27923808

RESUMO

Cidea is a gene highly expressed in thermogenesis-competent (UCP1-containing) adipose cells, both brown and brite/beige. Here, we initially demonstrate a remarkable adipose-depot specific regulation of Cidea expression. In classical brown fat, Cidea mRNA is expressed continuously and invariably, irrespective of tissue recruitment. However, Cidea protein levels are regulated posttranscriptionally, being conspicuously induced in the thermogenically recruited state. In contrast, in brite fat, Cidea protein levels are regulated at the transcriptional level, and Cidea mRNA and protein levels are proportional to tissue "briteness." Although routinely followed as a thermogenic molecular marker, Cidea function is not clarified. Here, we employed a gain-of-function approach to examine a possible role of Cidea in the regulation of thermogenesis. We utilized transgenic aP2-hCidea mice that overexpress human Cidea in all adipose tissues. We demonstrate that UCP1 activity is markedly suppressed in brown-fat mitochondria isolated from aP2-hCidea mice. However, mitochondrial UCP1 protein levels were identical in wild-type and transgenic mice. This implies a regulatory effect of Cidea on UCP1 activity, but as we demonstrate that Cidea itself is not localized to mitochondria, we propose an indirect inhibitory effect. The Cidea-induced inhibition of UCP1 activity (observed in isolated mitochondria) is physiologically relevant since the mice, through an appropriate homeostatic compensatory mechanism, increased the total amount of UCP1 in the tissue to exactly match the diminished thermogenic capacity of the UCP1 protein and retain unaltered nonshivering thermogenic capacity. Thus, we verified Cidea as being a marker of thermogenesis-competent adipose tissues, but we conclude that Cidea, unexpectedly, functions molecularly as an indirect inhibitor of thermogenesis.


Assuntos
Tecido Adiposo Marrom/metabolismo , Proteínas Reguladoras de Apoptose/genética , Mitocôndrias/metabolismo , RNA Mensageiro/metabolismo , Termogênese/genética , Proteína Desacopladora 1/genética , Tecido Adiposo Marrom/patologia , Tecido Adiposo Branco/patologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Western Blotting , Calorimetria Indireta , Temperatura Baixa , Humanos , Camundongos , Camundongos Transgênicos , Consumo de Oxigênio , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Desacopladora 1/metabolismo
3.
FASEB J ; 29(8): 3274-86, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25900807

RESUMO

Point mutations and deletions of mitochondrial DNA (mtDNA) accumulate in tissues during aging in animals and humans and are the basis for mitochondrial diseases. Testosterone synthesis occurs in the mitochondria of Leydig cells. Mitochondrial dysfunction (as induced here experimentally in mtDNA mutator mice that carry a proofreading-deficient form of mtDNA polymerase γ, leading to mitochondrial dysfunction in all cells types so far studied) would therefore be expected to lead to low testosterone levels. Although mtDNA mutator mice showed a dramatic reduction in testicle weight (only 15% remaining) and similar decreases in number of spermatozoa, testosterone levels in mtDNA mutator mice were unexpectedly fully unchanged. Leydig cell did not escape mitochondrial damage (only 20% of complex I and complex IV remaining) and did show high levels of reactive oxygen species (ROS) production (>5-fold increased), and permeabilized cells demonstrated absence of normal mitochondrial function. Nevertheless, within intact cells, mitochondrial membrane potential remained high, and testosterone production was maintained. This implies development of a compensatory mechanism. A rescuing mechanism involving electrons from the pentose phosphate pathway transferred via a 3-fold up-regulated cytochrome b5 to cytochrome c, allowing for mitochondrial energization, is suggested. Thus, the Leydig cells escape mitochondrial dysfunction via a unique rescue pathway. Such a pathway, bypassing respiratory chain dysfunction, may be of relevance with regard to mitochondrial disease therapy and to managing ageing in general.


Assuntos
Envelhecimento/genética , Células Intersticiais do Testículo/metabolismo , Mitocôndrias/genética , Doenças Mitocondriais/genética , Envelhecimento/metabolismo , Animais , Citocromos b5/genética , Citocromos b5/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , DNA Mitocondrial/genética , Masculino , Potencial da Membrana Mitocondrial/genética , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espermatozoides/metabolismo , Testosterona/genética , Testosterona/metabolismo
4.
Arch Toxicol ; 90(5): 1117-28, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26041126

RESUMO

The metabolically inert perfluorinated fatty acids perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) can display fatty acid-like activity in biological systems. The uncoupling protein 1 (UCP1) in brown adipose tissue is physiologically (re)activated by fatty acids, including octanoate. This leads to bioenergetically uncoupled energy dissipation (heat production, thermogenesis). We have examined here the possibility that PFOA/PFOS can directly (re)activate UCP1 in isolated mouse brown-fat mitochondria. In wild-type brown-fat mitochondria, PFOS and PFOA overcame GDP-inhibited thermogenesis, leading to increased oxygen consumption and dissipated membrane potential. The absence of this effect in brown-fat mitochondria from UCP1-ablated mice indicated that it occurred through activation of UCP1. A competitive type of inhibition by increased GDP concentrations indicated interaction with the same mechanistic site as that utilized by fatty acids. No effect was observed in heart mitochondria, i.e., in mitochondria without UCP1. The stimulatory effect of PFOA/PFOS was not secondary to non-specific mitochondrial membrane permeabilization or to ROS production. Thus, metabolic effects of perfluorinated fatty acids could include direct brown adipose tissue (UCP1) activation. The possibility that this may lead to unwarranted extra heat production and thus extra utilization of food resources, leading to decreased fitness in mammalian wildlife, is discussed, as well as possible negative effects in humans. However, a possibility to utilize PFOA-/PFOS-like substances for activating UCP1 therapeutically in obesity-prone humans may also be envisaged.


Assuntos
Adipócitos Marrons/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Ácidos Alcanossulfônicos/toxicidade , Caprilatos/toxicidade , Metabolismo Energético/efeitos dos fármacos , Fluorocarbonos/toxicidade , Mitocôndrias/efeitos dos fármacos , Proteína Desacopladora 1/metabolismo , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Relação Dose-Resposta a Droga , Guanosina Difosfato/metabolismo , Peróxido de Hidrogênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Dilatação Mitocondrial/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Fatores de Tempo , Proteína Desacopladora 1/genética
5.
Biochim Biophys Acta ; 1837(12): 2017-2030, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24769119

RESUMO

Whether active UCP1 can reduce ROS production in brown-fat mitochondria is presently not settled. The issue is of principal significance, as it can be seen as a proof- or disproof-of-principle concerning the ability of any protein to diminish ROS production through membrane depolarization. We therefore undertook a comprehensive investigation of the significance of UCP1 for ROS production, by comparing the ROS production in brown-fat mitochondria isolated from wildtype mice (that display membrane depolarization) or from UCP1(-/-) mice (with a high membrane potential). We tested the significance of UCP1 for glycerol-3-phosphate-supported ROS production by three methods (fluorescent dihydroethidium and the ESR probe PHH for superoxide, and fluorescent Amplex Red for hydrogen peroxide), and followed ROS production also with succinate, acyl-CoA or pyruvate as substrate. We studied the effects of the reverse electron flow inhibitor rotenone, the UCP1 activity inhibitor GDP, and the uncoupler FCCP. We also examined the effect of a physiologically induced increase in UCP1 amount. We noted GDP effects that were not UCP1-related. We conclude that only ROS production supported by exogenously added succinate was affected by the presence of active UCP1; ROS production supported by any other tested substrate (including endogenously generated succinate) was unaffected. This conclusion indicates that UCP1 is not involved in control of ROS production in brown-fat mitochondria. Extrapolation of these data to other tissues would imply that membrane depolarization may not necessarily decrease physiologically relevant ROS production. This article is a part of a Special Issue entitled: 18th European Bioenergetics Conference (Biochim. Biophys. Acta, Volume 1837, Issue 7, July 2014).


Assuntos
Tecido Adiposo Marrom/metabolismo , Canais Iônicos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Temperatura Baixa , Espectroscopia de Ressonância de Spin Eletrônica , Glicerofosfatos/farmacologia , Guanosina Difosfato/farmacologia , Peróxido de Hidrogênio/metabolismo , Immunoblotting , Canais Iônicos/genética , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Proteínas Mitocondriais/genética , Consumo de Oxigênio/efeitos dos fármacos , Ionóforos de Próton/farmacologia , Ácido Pirúvico/farmacologia , Ácido Succínico/farmacologia , Superóxidos/metabolismo , Proteína Desacopladora 1
6.
Biochim Biophys Acta ; 1807(9): 1095-105, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21565164

RESUMO

The function of uncoupling protein 3 (UCP3) is still not established. Mitochondrial uncoupling, control of ROS production, protection against lipotoxicity and protection against oxidative stress are functions classically discussed. To establish a role for UCP3 in these functions, we have here used UCP3 (-/-) mice, backcrossed for 10 generations on a C57Bl/6 background. In isolated skeletal muscle mitochondria, we examined uncoupled respiration, both unstimulated and in the presence of fatty acids. We did not observe any difference between mitochondria from wildtype and UCP3 (-/-) mice. We measured H(2)O(2) production rate and respiration rate under reactive oxygen species-generating conditions (succinate without rotenone) but found no effect of UCP3. We tested two models of acute lipotoxicity-fatty acid-induced oxidative inhibition and fatty acid-induced swelling-but did not observe any protective effect of UCP3. We examined oxidative stress by quantifying 4-hydroxynonenal protein adducts and protein carbonyls in the mitochondria-but did not observe any protective effect of UCP3. We conclude that under the experimental conditions tested here, we find no evidence for the function of UCP3 being basal or induced uncoupling, regulation of ROS production, protection against acute lipotoxicity or protection against oxidative damage.


Assuntos
Canais Iônicos/fisiologia , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/fisiologia , Músculo Esquelético/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Respiração , Animais , Western Blotting , Canais Iônicos/genética , Camundongos , Proteínas Mitocondriais/genética , Fosforilação Oxidativa , Proteína Desacopladora 3
7.
Biochim Biophys Acta Bioenerg ; 1863(4): 148542, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35192808

RESUMO

The possibility that N-acyl amino acids could function as brown or brite/beige adipose tissue-derived lipokines that could induce UCP1-independent thermogenesis by uncoupling mitochondrial respiration in several peripheral tissues is of significant physiological interest. To quantify the potency of N-acyl amino acids versus conventional fatty acids as thermogenic inducers, we have examined the affinity and efficacy of two pairs of such compounds: oleate versus N-oleoyl-leucine and arachidonate versus N-arachidonoyl-glycine in cells and mitochondria from different tissues. We found that in cultures of the muscle-derived L6 cell line, as well as in primary cultures of murine white, brite/beige and brown adipocytes, the N-acyl amino acids were proficient uncouplers but that they did not systematically display higher affinity or potency than the conventional fatty acids, and they were not as efficient uncouplers as classical protonophores (FCCP). Higher concentrations of the N-acyl amino acids (as well as of conventional fatty acids) were associated with signs of deleterious effects on the cells. In liver mitochondria, we found that the N-acyl amino acids uncoupled similarly to conventional fatty acids, thus apparently via activation of the adenine nucleotide transporter-2. In brown adipose tissue mitochondria, the N-acyl amino acids were able to activate UCP1, again similarly to conventional fatty acids. We thus conclude that the formation of the acyl-amino acid derivatives does not confer upon the corresponding fatty acids an enhanced ability to induce thermogenesis in peripheral tissues, and it is therefore unlikely that the N-acyl amino acids are of specific physiological relevance as UCP1-independent thermogenic compounds.


Assuntos
Aminoácidos , Ácidos Graxos , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Animais , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Camundongos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Termogênese/fisiologia , Proteína Desacopladora 1/metabolismo
8.
Nutrients ; 14(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35276915

RESUMO

The fatty acid elongase elongation of very long-chain fatty acids protein 2 (ELOVL2) controls the elongation of polyunsaturated fatty acids (PUFA) producing precursors for omega-3, docosahexaenoic acid (DHA), and omega-6, docosapentaenoic acid (DPAn-6) in vivo. Expectedly, Elovl2-ablation drastically reduced the DHA and DPAn-6 in liver mitochondrial membranes. Unexpectedly, however, total PUFAs levels decreased further than could be explained by Elovl2 ablation. The lipid peroxidation process was not involved in PUFAs reduction since malondialdehyde-lysine (MDAL) and other oxidative stress biomarkers were not enhanced. The content of mitochondrial respiratory chain proteins remained unchanged. Still, membrane remodeling was associated with the high voltage-dependent anion channel (VDAC) and adenine nucleotide translocase 2 (ANT2), a possible reflection of the increased demand on phospholipid transport to the mitochondria. Mitochondrial function was impaired despite preserved content of the respiratory chain proteins and the absence of oxidative damage. Oligomycin-insensitive oxygen consumption increased, and coefficients of respiratory control were reduced by 50%. The mitochondria became very sensitive to fatty acid-induced uncoupling and permeabilization, where ANT2 is involved. Mitochondrial volume and number of peroxisomes increased as revealed by transmission electron microscopy. In conclusion, the results imply that endogenous DHA production is vital for the normal function of mouse liver mitochondria and could be relevant not only for mice but also for human metabolism.


Assuntos
Mitocôndrias Hepáticas , Membranas Mitocondriais , Animais , Ácidos Graxos , Fígado , Camundongos , Mitocôndrias
9.
J Biol Chem ; 285(10): 7153-64, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20028987

RESUMO

The recent insight that brown adipocytes and muscle cells share a common origin and in this respect are distinct from white adipocytes has spurred questions concerning the origin and molecular characteristics of the UCP1-expressing cells observed in classic white adipose tissue depots under certain physiological or pharmacological conditions. Examining precursors from the purest white adipose tissue depot (epididymal), we report here that chronic treatment with the peroxisome proliferator-activated receptor gamma agonist rosiglitazone promotes not only the expression of PGC-1alpha and mitochondriogenesis in these cells but also a norepinephrine-augmentable UCP1 gene expression in a significant subset of the cells, providing these cells with a genuine thermogenic capacity. However, although functional thermogenic genes are expressed, the cells are devoid of transcripts for the novel transcription factors now associated with classic brown adipocytes (Zic1, Lhx8, Meox2, and characteristically PRDM16) or for myocyte-associated genes (myogenin and myomirs (muscle-specific microRNAs)) and retain white fat characteristics such as Hoxc9 expression. Co-culture experiments verify that the UCP1-expressing cells are not proliferating classic brown adipocytes (adipomyocytes), and these cells therefore constitute a subset of adipocytes ("brite" adipocytes) with a developmental origin and molecular characteristics distinguishing them as a separate class of cells.


Assuntos
Adipócitos Marrons/fisiologia , Adipócitos Brancos/fisiologia , Diferenciação Celular/fisiologia , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , PPAR gama/agonistas , PPAR gama/metabolismo , Termogênese/fisiologia , Adipócitos Marrons/citologia , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Brancos/citologia , Adipócitos Brancos/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Células Cultivadas , Técnicas de Cocultura , Epididimo/citologia , Regulação da Expressão Gênica , Hipoglicemiantes/farmacologia , Canais Iônicos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/genética , Consumo de Oxigênio/fisiologia , PPAR gama/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Rosiglitazona , Tiazolidinedionas/farmacologia , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição , Proteína Desacopladora 1 , Canais de Ânion Dependentes de Voltagem/genética , Canais de Ânion Dependentes de Voltagem/metabolismo
10.
Biochim Biophys Acta ; 1797(6-7): 773-84, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20399195

RESUMO

The activity of uncoupling protein-1 (UCP1) is rate-limiting for nonshivering thermogenesis and diet-induced thermogenesis. Characteristically, this activity is inhibited by GDP experimentally and presumably mainly by cytosolic ATP within brown-fat cells. The issue as to whether UCP1 has a residual proton conductance even when fully saturated with GDP/ATP (as has recently been suggested) has not only scientific but also applied interest, since a residual proton conductance would make overexpressed UCP1 weight-reducing even without physiological/pharmacological activation. To examine this question, we have here established optimal conditions for studying the bioenergetics of wild-type and UCP1-/- brown-fat mitochondria, analysing UCP1-mediated differences in parallel preparations of brown-fat mitochondria from both genotypes. Comparing different substrates, we find that pyruvate (or palmitoyl-L-carnitine) shows the largest relative coupling by GDP. Comparing albumin concentrations, we find the range 0.1-0.6% optimal; higher concentrations are inhibitory. Comparing basic medium composition, we find 125 mM sucrose optimal; an ionic medium (50-100 mM KCl) functions for wild-type but is detrimental for UCP1-/- mitochondria. Using optimal conditions, we find no evidence for a residual proton conductance (not a higher post-GDP respiration, a lower membrane potential or an altered proton leak at highest common potential) with either pyruvate or glycerol-3-phosphate as substrates, nor by a 3-4-fold alteration of the amount of UCP1. We could demonstrate that certain experimental conditions, due to respiratoty inhibition, could lead to the suggestion that UCP1 possesses a residual proton conductance but find that under optimal conditions our experiments concur with implications from physiological observations that in the presence of inhibitory nucleotides, UCP1 is not leaky.


Assuntos
Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Proteínas Reguladoras de Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Bovinos , Meios de Cultura , Eletroquímica , Metabolismo Energético/efeitos dos fármacos , Glicerofosfatos/farmacologia , Guanosina Difosfato/farmacologia , Técnicas In Vitro , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/deficiência , Canais Iônicos/genética , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Consumo de Oxigênio/efeitos dos fármacos , Prótons , Ácido Pirúvico/metabolismo , Proteínas de Ligação a RNA , Proteínas Ribossômicas/efeitos dos fármacos , Proteínas Ribossômicas/metabolismo , Soroalbumina Bovina , Ácido Succínico/metabolismo , Desacopladores/farmacologia , Proteína Desacopladora 1
11.
Biochim Biophys Acta ; 1797(6-7): 968-80, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20227385

RESUMO

Mice lacking the thermogenic mitochondrial membrane protein UCP1 (uncoupling protein 1)--and thus all heat production from brown adipose tissue--can still adapt to a cold environment (4 degrees C) if successively transferred to the cold. The mechanism behind this adaptation has not been clarified. To examine possible adaptive processes in the skeletal muscle, we isolated mitochondria from the hind limb muscles of cold-acclimated wild-type and UCP1(-/-) mice and examined their bioenergetic chracteristics. We observed a switch in metabolism, from carbohydrate towards lipid catabolism, and an increased total mitochondrial complement, with an increased total ATP production capacity. The UCP1(-/-) muscle mitochondria did not display a changed state-4 respiration rate (no uncoupling) and were less sensitive to the uncoupling effect of fatty acids than the wild-type mitochondria. The content of UCP3 was increased 3-4 fold, but despite this, endogenous superoxide could not invoke a higher proton leak, and the small inhibitory effect of GDP was unaltered, indicating that it was not mediated by UCP3. Double mutant mice (UCP1(-/-) plus superoxide dismutase 2-overexpression) were not more cold sensitive than UCP1(-/-), bringing into question an involvement of reactive oxygen species (ROS) in activation of any alternative thermogenic mechanism. We conclude that there is no evidence for an involvement of UCP3 in basal, fatty-acid- or superoxide-stimulated oxygen consumption or in GDP sensitivity. The adaptations observed did not imply any direct alternative process for nonshivering thermogenesis but the adaptations observed would be congruent with adaptation to chronically enhanced muscle activity caused by incessant shivering in these mice.


Assuntos
Aclimatação/fisiologia , Canais Iônicos/deficiência , Canais Iônicos/metabolismo , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/metabolismo , Aclimatação/genética , Trifosfato de Adenosina/biossíntese , Animais , Temperatura Baixa , Metabolismo Energético , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Feminino , Guanosina Difosfato/farmacologia , Técnicas In Vitro , Canais Iônicos/genética , Peroxidação de Lipídeos , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Musculares/efeitos dos fármacos , Proteínas Mitocondriais/genética , Músculo Esquelético/metabolismo , Estresse Oxidativo , Consumo de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo , Termogênese/genética , Termogênese/fisiologia , Proteína Desacopladora 1 , Proteína Desacopladora 3 , Regulação para Cima
12.
Biochem Soc Trans ; 39(5): 1305-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21936806

RESUMO

During the last decade, the possibility that 'mild' uncoupling could be protective against oxidative damage by diminishing ROS (reactive oxygen species) production has attracted much interest. In the present paper, we briefly examine the evidence for this possibility. It is only ROS production from succinate under reverse electron-flow conditions that is sensitive to membrane potential fluctuations, and so only this type of ROS production could be affected; however, the conditions under which succinate-supported ROS production is observed include succinate concentrations that are supraphysiological. Any decrease in membrane potential, even 'mild uncoupling', must necessarily lead to large increases in respiration, i.e. it must be markedly thermogenic. Mitochondria within cells are normally ATP-producing and thus already have a diminished membrane potential, and treatment of cells, organs or animals with small amounts of artificial uncoupler does not seem to have beneficial effects that are explainable via reduced ROS production. Although it has been suggested that members of the uncoupling protein family (UCP1, UCP2 and UCP3) may mediate a mild uncoupling, present evidence does not unequivocally support such an effect, e.g. the absence of the truly uncoupling protein UCP1 is not associated with increased oxidative damage. Thus present evidence does not support mild uncoupling as a physiologically relevant alleviator of oxidative damage.


Assuntos
Respiração Celular/fisiologia , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transporte de Elétrons/fisiologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredução , Proteína Desacopladora 1
13.
J Physiol ; 588(Pt 21): 4275-88, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20837639

RESUMO

Mammals exposed to a cold environment initially generate heat by repetitive muscle activity (shivering). Shivering is successively replaced by the recruitment of uncoupling protein-1 (UCP1)-dependent heat production in brown adipose tissue. Interestingly, adaptations observed in skeletal muscles of cold-exposed animals are similar to those observed with endurance training. We hypothesized that increased myoplasmic free [Ca2+] ([Ca2+]i) is important for these adaptations. To test this hypothesis, experiments were performed on flexor digitorum brevis (FDB) muscles, which do not participate in the shivering response, of adult wild-type (WT) and UCP1-ablated (UCP1-KO) mice kept either at room temperature (24°C) or cold-acclimated (4°C) for 4-5 weeks. [Ca2+]i (measured with indo-1) and force were measured under control conditions and during fatigue induced by repeated tetanic stimulation in intact single fibres. The results show no differences between fibres from WT and UCP1-KO mice. However, muscle fibres from cold-acclimated mice showed significant increases in basal [Ca2+]i (∼50%), tetanic [Ca2+]i (∼40%), and sarcoplasmic reticulum (SR) Ca2+ leak (∼fourfold) as compared to fibres from room-temperature mice. Muscles of cold-acclimated mice showed increased expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and increased citrate synthase activity (reflecting increased mitochondrial content). Fibres of cold-acclimated mice were more fatigue resistant with higher tetanic [Ca2+]i and less force loss during fatiguing stimulation. In conclusion, cold exposure induces changes in FDB muscles similar to those observed with endurance training and we propose that increased [Ca2+]i is a key factor underlying these adaptations.


Assuntos
Adaptação Fisiológica/fisiologia , Cálcio/fisiologia , Temperatura Baixa , Mitocôndrias Musculares/fisiologia , Fadiga Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Animais , Feminino , Canais Iônicos/genética , Canais Iônicos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/fisiologia , Modelos Animais , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Estremecimento/fisiologia , Transativadores/fisiologia , Fatores de Transcrição , Proteína Desacopladora 1
14.
Am J Physiol Endocrinol Metab ; 299(3): E374-83, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20530737

RESUMO

Caveolin-1 (Cav1)-ablated mice display impaired lipolysis in white adipose tissue. They also seem to have an impairment in brown adipose tissue function, implying that Cav1-ablated mice could encounter problems in surviving longer periods in cold temperatures. To investigate this, Cav1-ablated mice and wild-type mice were transferred to cold temperatures for extended periods of time, and parameters related to metabolism and thermogenesis were investigated. Unexpectedly, the Cav1-ablated mice survived in the cold. There were no differences between Cav1-ablated and wild-type mice with regard to food intake, in behavior related to shivering, or in body temperature. The Cav1-ablated mice had a halved total fat content independently of acclimation temperature. There was no difference in brown adipose tissue uncoupling protein-1 (UCP1) protein amount, and isolated brown fat mitochondria were thermogenically competent but displayed 30% higher thermogenic capacity. However, the beta(3)-adrenergic receptor amount was reduced by about one-third in the Cav1-ablated mice at all acclimation temperatures. Principally in accordance with this, a higher than standard dose of norepinephrine was needed to obtain full norepinephrine-induced thermogenesis in the Cav1-ablated mice; the higher dose was also needed for the Cav1-ablated mice to be able to utilize fat as a substrate for thermogenesis. In conclusion, the ablation of Cav1 impairs brown adipose tissue function by a desensitization of the adrenergic response; however, the desensitization is not evident in the animal as it is overcome physiologically, and Cav1-ablated mice can therefore survive in prolonged cold by nonshivering thermogenesis.


Assuntos
Tecido Adiposo Marrom/fisiologia , Caveolina 1/fisiologia , Receptores Adrenérgicos beta/fisiologia , Termogênese/fisiologia , Animais , Metabolismo Basal , Composição Corporal , Temperatura Corporal/fisiologia , Peso Corporal/fisiologia , Calorimetria Indireta , Temperatura Baixa , Ingestão de Alimentos/fisiologia , Feminino , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/fisiologia , Norepinefrina/farmacologia
15.
Biochim Biophys Acta ; 1777(7-8): 642-50, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18489899

RESUMO

In the present investigation, we have utilized the availability of UCP1(-/-) mice to examine a wide range of previously proposed lipid activators of Uncoupling Protein 1 (UCP1) in its native environment, i.e. in the brown-fat cells. A non-metabolizable fatty acid analogue, beta,beta cent-methyl-substituted hexadecane alpha,omega-dicarboxylic acid (Medica-16) is a potent UCP1 (re)activator in brown-fat cells, despite its bipolar structure. All-trans-retinoic acid activates UCP1 within cells, whereas beta-carotene only does so after metabolism. The UCP1-dependent effects of fatty acids are positively correlated with their chain length. Medium-chain fatty acids are potent UCP1 activators in cells, despite their lack of protonophoric properties in mitochondrial membranes. Thus, neither the ability to be metabolized nor an innate uncoupling/protonophoric ability is a necessary property of UCP1 activators within brown-fat cells.


Assuntos
Tecido Adiposo Marrom/metabolismo , Ácidos Graxos/metabolismo , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Ácidos Graxos/farmacologia , Guanosina Difosfato/metabolismo , Cinética , Camundongos , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Proteína Desacopladora 1
16.
FASEB J ; 22(1): 55-63, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17666453

RESUMO

Despite the significance of mitochondrial ATP synthase for mammalian metabolism, the regulation of the amount of ATP synthase in mammalian systems is not understood. As brown adipose tissue mitochondria contain very low amounts of ATP synthase, relative to respiratory chain components, they constitute a physiological system that allows for examination of the control of ATP synthase assembly. To examine the role of the expression of the P1-isoform of the c-Fo subunit in the biogenesis of ATP synthase, we made transgenic mice that express the P1-c subunit isoform under the promoter of the brown adipose tissue-specific protein UCP1. In the resulting UCP1p1 transgenic mice, total P1-c subunit mRNA levels were increased; mRNA levels of other F1Fo-ATPase subunits were unchanged. In isolated brown-fat mitochondria, protein levels of the total c-Fo subunit were increased. Remarkably, protein levels of ATP synthase subunits that are part of the F1-ATPase complex were also increased, as was the entire Complex V. Increased ATPase and ATP synthase activities demonstrated an increased functional activity of the F1Fo-ATPase. Thus, the levels of the c-Fo subunit P1-isoform are crucial for defining the final content of the ATP synthase in brown adipose tissue. The level of c-Fo subunit may be a determining factor for F1Fo-ATPase assembly in all higher eukaryotes.


Assuntos
Tecido Adiposo Marrom/enzimologia , Isoenzimas/metabolismo , Mitocôndrias/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Animais , Sequência de Bases , Western Blotting , Primers do DNA , Efeito Fundador , Canais Iônicos/genética , Canais Iônicos/fisiologia , Camundongos , Camundongos Transgênicos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/fisiologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Desacopladora 1
17.
FASEB J ; 22(11): 3919-24, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18687806

RESUMO

When acutely exposed to a cold environment, mammals shiver to generate heat. During prolonged cold exposure, shivering is replaced by adaptive adrenergic nonshivering thermogenesis with increased heat production in brown adipose tissue due to activation of uncoupling protein-1 (UCP1). This cold acclimation is associated with chronically increased sympathetic stimulation of skeletal muscle, which may increase the sarcoplasmic reticulum (SR) Ca(2+) leak via destabilized ryanodine receptor 1 (RyR1) channel complexes. Here, we use genetically engineered UCP1-deficient (UCP1-KO) mice that rely completely on shivering in the cold. We examine soleus muscle, which participates in shivering, and flexor digitorum brevis (FDB) muscle, a distal and superficial muscle that does not shiver. Soleus muscles of cold-acclimated UCP1-KO mice exhibited severe RyR1 PKA hyperphosphorylation and calstabin1 depletion, as well as markedly decreased SR Ca(2+) release and force during contractions. In stark contrast, the RyR1 channel complexes were little affected, and Ca(2+) and force were not decreased in FDB muscles of cold-acclimated UCP1-KO mice. These results indicate that activation of UCP1-mediated heat production in brown adipose tissue during cold exposure reduces the necessity for shivering and thus prevents the development of severe dysfunction in shivering muscles.


Assuntos
Aclimatação/fisiologia , Cálcio/metabolismo , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Termogênese/fisiologia , Tecido Adiposo Marrom/metabolismo , Animais , Temperatura Baixa , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Canais Iônicos/genética , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteínas Musculares/genética , Fosforilação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Estremecimento/fisiologia , Proteína Desacopladora 1
18.
Cell Rep ; 27(6): 1686-1698.e5, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067456

RESUMO

An excess of glucocorticoids leads to the development of obesity in both mice and humans, but the mechanism for this is unknown. Here, we determine the extent to which decreased BAT thermogenic capacity (as a result of glucocorticoid treatment) contributes to the development of obesity. Contrary to previous suggestions, we show that only in mice housed at thermoneutrality (30°C) does corticosterone treatment reduce total BAT UCP1 protein. This reduction is reflected in reduced brown adipocyte cellular and mitochondrial UCP1-dependent respiration. However, glucocorticoid-induced obesity develops to the same extent in animals housed at 21°C and 30°C, whereas total BAT UCP1 protein levels differ 100-fold between the two groups. In corticosterone-treated wild-type and UCP1 knockout mice housed at 30°C, obesity also develops to the same extent. Thus, our results demonstrate that the development of glucocorticoid-induced obesity is not caused by a decreased UCP1-dependent thermogenic capacity.


Assuntos
Glucocorticoides/efeitos adversos , Obesidade/etiologia , Obesidade/metabolismo , Proteína Desacopladora 1/metabolismo , Tecido Adiposo Marrom/metabolismo , Adiposidade , Animais , Respiração Celular , Corticosterona/efeitos adversos , Regulação para Baixo , Comportamento Alimentar , Camundongos , Mitocôndrias/metabolismo , Obesidade/patologia , Fenótipo , Temperatura , Transcrição Gênica
19.
Cell Signal ; 19(7): 1610-20, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17391917

RESUMO

NADPH oxidase inhibitors such as diphenylene iodonium (DPI) and apocynin lower whole body and blood glucose levels and improve diabetes when administered to rodents. Skeletal muscle has an important role in managing glucose homeostasis and we have used L6 cells, C(2)C(12) cells and primary muscle cells as model systems to investigate whether these drugs regulate glucose uptake in skeletal muscle cells. The data presented in this study show that apocynin does not affect glucose uptake in skeletal muscle cells in culture. Tat gp91ds, a chimeric peptide that inhibits NADPH oxidase activity, also failed to affect glucose uptake and we found no significant evidence of NADPH oxidase (subunits tested were Nox4, p22phox, gp91phox and p47phox mRNA) in skeletal muscle cells in culture. However, DPI increases basal and insulin-stimulated glucose uptake in L6 cells, C(2)C(12) cells and primary muscle cells. Detailed studies on L6 cells demonstrate that the increase of glucose uptake is via a mechanism independent of phosphoinositide-3 kinase (PI3K)/Akt but dependent on AMP-activated protein kinase (AMPK). We postulate that DPI through inhibition of mitochondrial complex 1 and decreases in oxygen consumption, leading to decreases of ATP and activation of AMPK, stimulates glucose uptake in skeletal muscle cells.


Assuntos
Complexo I de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Glucose/metabolismo , Complexos Multienzimáticos/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Oniocompostos/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Acetofenonas/farmacologia , Acetil-CoA Carboxilase/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Diferenciação Celular/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Ativação Enzimática/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glicogênio/biossíntese , Quinase 3 da Glicogênio Sintase/metabolismo , Glicoproteínas/farmacologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Serina/metabolismo
20.
Cell Rep ; 24(10): 2746-2756.e5, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30184507

RESUMO

Adipocytes, once considered simple lipid-storing cells, are rapidly emerging as complex cells with many biologically diverse functions. A powerful high-throughput method for analyzing single cells is flow cytometry. Several groups have attempted to analyze and sort freshly isolated adipocytes; however, using an adipocyte-specific reporter mouse, we demonstrate that these studies fail to detect the majority of white adipocytes. We define critical settings required for adipocyte flow cytometry and provide a rigid strategy for analyzing and sorting white and brown adipocyte populations. The applicability of our protocol is shown by sorting mouse adipocytes based on size or UCP1 expression and demonstrating that a subset of human adipocytes lacks the ß2-adrenergic receptor, particularly in the insulin-resistant state. In conclusion, the present study confers key technological insights for analyzing and sorting mature adipocytes, opening up numerous downstream research applications.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Citometria de Fluxo/métodos , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Humanos , Camundongos , Proteína Desacopladora 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA