RESUMO
Myxoma virus (MV) is a rabbit-specific poxvirus, whose unexpected tropism to human cancer cells has led to studies exploring its potential use in oncolytic therapy. MV infects a wide range of human cancer cells in vitro, in a manner intricately linked to the cellular activation of Akt kinase. MV has also been successfully used for treating human glioma xenografts in immunodeficient mice. This study examines the effectiveness of MV in treating primary and metastatic mouse tumors in immunocompetent C57BL6 mice. We have found that several mouse tumor cell lines, including B16 melanomas, are permissive to MV infection. B16F10 cells were used for assessing MV replication and efficacy in syngeneic primary tumor and metastatic models in vivo. Multiple intratumoral injections of MV resulted in dramatic inhibition of tumor growth. Systemic administration of MV in a lung metastasis model with B16F10LacZ cells was dramatically effective in reducing lung tumor burden. Combination therapy of MV with rapamycin reduced both size and number of lung metastases, and also reduced the induced antiviral neutralizing antibody titres, but did not affect tumor tropism. These results show MV to be a promising virotherapeutic agent in immunocompetent animal tumor models, with good efficacy in combination with rapamycin.
Assuntos
Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/terapia , Melanoma Experimental/terapia , Melanoma Experimental/virologia , Myxoma virus , Terapia Viral Oncolítica , Adjuvantes Farmacêuticos/uso terapêutico , Animais , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/virologia , Melanoma Experimental/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Myxoma virus/efeitos dos fármacos , Myxoma virus/genética , Terapia Viral Oncolítica/métodos , Coelhos , Sirolimo/uso terapêuticoRESUMO
Members of the genus Yatapoxvirus, which include Tanapox virus (TPV) and Yaba monkey tumor virus, infect primates including humans. Two strains of TPV isolated 50 years apart from patients infected from the equatorial region of Africa have been sequenced. The original isolate from a human case in the Tana River Valley, Kenya, in 1957 (TPV-Kenya) and an isolate from an infected traveler in the Republic of Congo in 2004 (TPV-RoC). Although isolated 50 years apart the genomes were highly conserved. The genomes differed at only 35 of 144,565 nucleotide positions (99.98% identical). We predict that TPV-RoC encodes 155 ORFs, however a single transversion (at nucleotide 10241) in TPV-Kenya resulted in the coding capacity for two predicted ORFs (11.1L and 11.2L) in comparison to a single ORF (11L) in TPV-RoC. The genomes of TPV are A+T rich (73%) and 96% of the sequence encodes predicted ORFs. Comparative genomic analysis identified several features shared with other chordopoxviruses. A conserved sequence within the terminal inverted repeat region that is also present in the other members of the Yatapoxviruses as well as members of the Capripoxviruses, Swinepox virus and an unclassified Deerpox virus suggests the existence of a conserved near-terminal sequence secondary structure. Two previously unidentified gene families were annotated that are represented by ORF TPV28L, which matched homologues in certain other chordopoxviruses, and TPV42.5L, which is highly conserved among currently reported chordopoxvirus sequences.