RESUMO
BACKGROUND: The His-Purkinje (HP) system provides a pathway for the time-synchronous contraction of the heart. His bundle (HB) of the HP system is gaining relevance as a pacing site for treating non-reversible bradyarrhythmia despite limited availability of tools to identify the HB. In this paper, we describe a real-time stimulation and recording system (rt-SRS) to investigate using multi-electrode techniques to identify and selectively pace the HB. The rt-SRS can not only be used in sinus rhythm, but also during ventricular fibrillation (VF). The rt-SRS will also help investigate the so far unknown causal effects of selectively pacing the HB during VF. METHODS: The rt-SRS consists of preamplifiers, data acquisition cards interfaced with a real-time controller, a current source, and current routing switches on a remote computer, which may be interrupted to stimulate using a host machine. The remote computer hosts a series of algorithms designed to aid in identifying electrodes directly over the HB, to accurately detect activation rates without over-picking, and to deliver stimulation pulses. The performance of the rt-SRS was demonstrated in seven isolated, perfused rabbit hearts. RESULTS: The rt-SRS can visualize up to 96 channels of raw data, and spatial derivative data at 6.25-kHz sampling rate with an input-referred noise of 100 µV. The rt-SRS can send up to ± 150 V of stimuli pulses to any of the 96 channels. In the rabbit experiments, HB activations were detected in 18 ± 6.8% of the 64 electrodes used during VF. CONCLUSIONS: The rt-SRS is capable of measuring and responding to cardiac electrophysiological phenomena in real-time with precisely timed and placed electrical stimuli. This rt-SRS was shown to be an effective research tool by successfully detecting and quantifying HB activations and delivering stimulation pulses to selected electrodes in real-time.
Assuntos
Fascículo Atrioventricular/fisiopatologia , Eletrofisiologia/instrumentação , Fibrilação Ventricular/fisiopatologia , Algoritmos , Animais , Sistemas Computacionais , Eletrodos , CoelhosRESUMO
PURPOSE: The potential of pacing and capturing the His-Purkinje system (HPS) to synchronize VF wavefronts is not known even though the HPS is thought to be electrically linked during VF. In this study the effect of selective His Bundle (HB) pacing was compared with nearby working myocardial (WM) pacing on the left ventricular (LV) endocardial activation rates. METHODS: Rabbit hearts (n = 9) were explanted and Langendorff perfused. Electrodes directly on the HB were identified and paced subsequently using an electrode array. The WM was paced through a silver wire inserted in the right ventricular septal wall. After VF was induced, the HB was paced at rates faster than the intrinsic HB activation rate (n = 18 episodes) and also at rates faster than the LV activation rate (n = 16). A basket array inserted in the LV was used to record electrograms before and during each pacing episode. Activation rates at five LV electrodes each from the earliest and latest activating sinus rhythm regions were analyzed before and during pacing. RESULTS: Both HB and WM pacing reduced LV activation rates during pacing, but WM pacing was more effective (p < 0.005). WM pacing events were more effective (p < 0.05) in reducing LV activation rates than HB pacing in episodes which were faster than LV activation rates. CONCLUSION: This study provides evidence that during early VF in rabbit hearts, the HPS cannot be driven to effectively modulate the LV activation rates.
Assuntos
Fascículo Atrioventricular , Estimulação Cardíaca Artificial , Animais , Fascículo Atrioventricular/fisiologia , Ventrículos do Coração , Miocárdio , CoelhosRESUMO
Utah Electrode Arrays (UEAs) have previously been characterized and implanted for neural recordings and stimulation at relatively low current levels. This proof-of-concept study investigated the applicability of UEAs in sub-surface cardiac pacing, for the first time, particularly to selectively sense and pace the His-Bundle (HB). HB pacing produces synchronous ventricular depolarization and improved cardiac function. Modified UEAs with sputtered iridium oxide film (SIROF) tips (100 - 150 µm) were characterized for SIROF delamination using an electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and voltage transient (VT) techniques at various current levels of up to 8 mA for a biphasic pulse with 1 ms duration per phase at 4 Hz. Our results indicate that at a short pacing duration of 20 s with current levels of up to 4 mA, the SIROF exhibited a strong charge-transfer performance. For the longer pacing duration (6 min), SIROF demonstrated its holding capacity at all current levels except for ≥2 mA when delamination commenced for the time exceeded 4 min (EIS) and 2 min (VT). UEAs were inserted in isolated, perfused goat hearts to record the HB electrograms in real-time. Both stimulated and unstimulated electrodes were characterized for SIROF delamination before, during and after in vivo work. Our findings indicate that UEA was stable during the heart's contraction and relaxation phase. Further, at a short pacing duration with current levels of up to 4 mA, UEA demonstrated high selectively in sensing the HB. This proof-of-concept work demonstrates the potential applicability of UEAs in cardiac applications.