RESUMO
Cell-to-cell expression variation (CEV) is a prevalent feature of even well-defined cell populations, but its functions, particularly at the organismal level, are not well understood. Using single-cell data obtained via high-dimensional flow cytometry of T cells as a model, we introduce an analysis framework for quantifying CEV in primary cell populations and studying its functional associations in human cohorts. Analyses of 840 CEV phenotypes spanning multiple baseline measurements of 14 proteins in 28 T cell subpopulations suggest that the quantitative extent of CEV can exhibit substantial subject-to-subject differences and yet remain stable within healthy individuals over months. We linked CEV to age and disease-associated genetic polymorphisms, thus implicating CEV as a biomarker of aging and disease susceptibility and suggesting that it might play an important role in health and disease. Our dataset, interactive figures, and software for computing CEV with flow cytometry data provide a resource for exploring CEV functions.
Assuntos
Envelhecimento/imunologia , Linfócitos T/imunologia , Estudos de Coortes , Feminino , Citometria de Fluxo , Predisposição Genética para Doença , Humanos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
There is a significant interest in the standardized classification of human genetic variants. We used whole-genome sequence data from 10,495 unrelated individuals to contrast population frequency of pathogenic variants to the expected population prevalence of the disease. Analyses included the ACMG-recommended 59 gene-condition sets for incidental findings and 463 genes associated with 265 OrphaNet conditions. A total of 25,505 variants were used to identify patterns of inflation (i.e., excess genetic risk and misclassification). Inflation increases as the level of evidence supporting the pathogenic nature of the variant decreases. We observed up to 11.5% of genetic disorders with inflation in pathogenic variant sets and up to 92.3% for the variant set with conflicting interpretations. This improved to 7.7% and 57.7%, respectively, after filtering for disease-specific allele frequency. The patterns of inflation were replicated using public data from more than 138,000 genomes. The burden of rare variants was a main contributing factor of the observed inflation, indicating collective misclassified rare variants. We also analyzed the dynamics of re-classification of variant pathogenicity in ClinVar over time, which indicates progressive improvement in variant classification. The study shows that databases include a significant proportion of wrongly ascertained variants; however, it underscores the critical role of ClinVar to contrast claims and foster validation across submitters.
Assuntos
Doença/genética , Variação Genética , Predisposição Genética para Doença , Humanos , Prevalência , Reprodutibilidade dos Testes , Fatores de Risco , Software , Fatores de TempoRESUMO
Reducing premature mortality associated with age-related chronic diseases, such as cancer and cardiovascular disease, is an urgent priority. We report early results using genomics in combination with advanced imaging and other clinical testing to proactively screen for age-related chronic disease risk among adults. We enrolled active, symptom-free adults in a study of screening for age-related chronic diseases associated with premature mortality. In addition to personal and family medical history and other clinical testing, we obtained whole-genome sequencing (WGS), noncontrast whole-body MRI, dual-energy X-ray absorptiometry (DXA), global metabolomics, a new blood test for prediabetes (Quantose IR), echocardiography (ECHO), ECG, and cardiac rhythm monitoring to identify age-related chronic disease risks. Precision medicine screening using WGS and advanced imaging along with other testing among active, symptom-free adults identified a broad set of complementary age-related chronic disease risks associated with premature mortality and strengthened WGS variant interpretation. This and other similarly designed screening approaches anchored by WGS and advanced imaging may have the potential to extend healthy life among active adults through improved prevention and early detection of age-related chronic diseases (and their risk factors) associated with premature mortality.
Assuntos
Doença/genética , Predisposição Genética para Doença , Processamento de Imagem Assistida por Computador/métodos , Mutação , Medicina de Precisão/métodos , Sequenciamento Completo do Genoma/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças Cardiovasculares/diagnóstico por imagem , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Doença/classificação , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/diagnóstico por imagem , Neoplasias/genética , Neoplasias/patologia , Doenças do Sistema Nervoso/diagnóstico por imagem , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Medição de Risco , Análise de Sequência de RNA , Adulto JovemRESUMO
Next-generation sequencing technologies have generated, and continue to produce, an increasingly large corpus of biological data. The data generated are inherently compositional as they convey only relative information dependent upon the capacity of the instrument, experimental design and technical bias. There is considerable information to be gained through network analysis by studying the interactions between components within a system. Network theory methods using compositional data are powerful approaches for quantifying relationships between biological components and their relevance to phenotype, environmental conditions or other external variables. However, many of the statistical assumptions used for network analysis are not designed for compositional data and can bias downstream results. In this mini-review, we illustrate the utility of network theory in biological systems and investigate modern techniques while introducing researchers to frameworks for implementation. We overview (1) compositional data analysis, (2) data transformations and (3) network theory along with insight on a battery of network types including static-, temporal-, sample-specific- and differential-networks. The intention of this mini-review is not to provide a comprehensive overview of network methods, rather to introduce microbiology researchers to (semi)-unsupervised data-driven approaches for inferring latent structures that may give insight into biological phenomena or abstract mechanics of complex systems.
Assuntos
Biologia/métodos , Pesquisa Biomédica/métodos , Análise de Dados , Sequenciamento de Nucleotídeos em Larga Escala , Web SemânticaRESUMO
We report on the sequencing of 10,545 human genomes at 30×-40× coverage with an emphasis on quality metrics and novel variant and sequence discovery. We find that 84% of an individual human genome can be sequenced confidently. This high-confidence region includes 91.5% of exon sequence and 95.2% of known pathogenic variant positions. We present the distribution of over 150 million single-nucleotide variants in the coding and noncoding genome. Each newly sequenced genome contributes an average of 8,579 novel variants. In addition, each genome carries on average 0.7 Mb of sequence that is not found in the main build of the hg38 reference genome. The density of this catalog of variation allowed us to construct high-resolution profiles that define genomic sites that are highly intolerant of genetic variation. These results indicate that the data generated by deep genome sequencing is of the quality necessary for clinical use.
Assuntos
Genoma Humano , Genômica , Sequenciamento Completo do Genoma , Mapeamento Cromossômico , Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Predisposição Genética para Doença , Variação Genética , Genômica/métodos , Humanos , Fases de Leitura Aberta , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Regiões não TraduzidasRESUMO
BACKGROUND: Epistasis (synergistic interaction) among SNPs governing gene expression is likely to arise within transcriptional networks. However, the power to detect it is limited by the large number of combinations to be tested and the modest sample sizes of most datasets. By limiting the interaction search space firstly to cis-trans and then cis-cis SNP pairs where both SNPs had an independent effect on the expression of the most variable transcripts in the liver and brain, we greatly reduced the size of the search space. RESULTS: Within the cis-trans search space we discovered three transcripts with significant epistasis. Surprisingly, all interacting SNP pairs were located nearby each other on the chromosome (within 290 kb-2.16 Mb). Despite their proximity, the interacting SNPs were outside the range of linkage disequilibrium (LD), which was absent between the pairs (r(2) < 0.01). Accordingly, we redefined the search space to detect cis-cis interactions, where a cis-SNP was located within 10 Mb of the target transcript. The results of this show evidence for the epistatic regulation of 50 transcripts across the tissues studied. Three transcripts, namely, HLA-G, PSORS1C1 and HLA-DRB5 share common regulatory SNPs in the pre-frontal cortex and their expression is significantly correlated. This pattern of epistasis is consistent with mediation via long-range chromatin structures rather than the binding of transcription factors in trans. Accordingly, some of the interactions map to regions of the genome known to physically interact in lymphoblastoid cell lines while others map to known promoter and enhancer elements. SNPs involved in interactions appear to be enriched for promoter markers. CONCLUSIONS: In the context of gene expression and its regulation, our analysis indicates that the study of cis-cis or local epistatic interactions may have a more important role than interchromosomal interactions.
Assuntos
Epistasia Genética , Genoma Humano , Locos de Características Quantitativas , Cerebelo/metabolismo , Lobo Frontal/metabolismo , Estudo de Associação Genômica Ampla , Genótipo , Cadeias HLA-DRB5/genética , Antígenos HLA-G/genética , Humanos , Desequilíbrio de Ligação , Fígado/metabolismo , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Proteínas/genética , Córtex Visual/metabolismoRESUMO
OBJECTIVE: To establish the genetic basis of Landau-Kleffner syndrome (LKS) in a cohort of two discordant monozygotic (MZ) twin pairs and 11 isolated cases. METHODS: We used a multifaceted approach to identify genetic risk factors for LKS. Array comparative genomic hybridization (CGH) was performed using the Agilent 180K array. Whole genome methylation profiling was undertaken in the two discordant twin pairs, three isolated LKS cases, and 12 control samples using the Illumina 27K array. Exome sequencing was undertaken in 13 patients with LKS including two sets of discordant MZ twins. Data were analyzed with respect to novel and rare variants, overlapping genes, variants in reported epilepsy genes, and pathway enrichment. RESULTS: A variant (cG1553A) was found in a single patient in the GRIN2A gene, causing an arginine to histidine change at site 518, a predicted glutamate binding site. Following copy number variation (CNV), methylation, and exome sequencing analysis, no single candidate gene was identified to cause LKS in the remaining cohort. However, a number of interesting additional candidate variants were identified including variants in RELN, BSN, EPHB2, and NID2. SIGNIFICANCE: A single mutation was identified in the GRIN2A gene. This study has identified a number of additional candidate genes including RELN, BSN, EPHB2, and NID2. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here.
Assuntos
Síndrome de Landau-Kleffner/genética , Adolescente , Adulto , Proteínas de Ligação ao Cálcio , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular Neuronais/genética , Criança , Hibridização Genômica Comparativa , Proteínas da Matriz Extracelular/genética , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Proteínas do Tecido Nervoso/genética , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único/genética , Receptor EphB2/genética , Receptores de N-Metil-D-Aspartato/genética , Proteína Reelina , Serina Endopeptidases/genética , Gêmeos Monozigóticos/genética , Adulto JovemRESUMO
FOXO3 is a ubiquitous transcription factor expressed in response to cellular stress caused by nutrient deprivation, inflammatory cytokines, reactive oxygen species, radiation, hypoxia, and other factors. We showed previously that the association of inherited FOXO3 variants with longevity was the result of partial protection against mortality risk posed by aging-related life-long stressors, particularly cardiometabolic disease. We then referred to the longevity-associated genotypes as conferring "mortality resilience." Serum proteins whose levels change with aging and are associated with mortality risk may be considered as "stress proteins." They may serve as indirect measures of life-long stress. Our aims were to (1) identify stress proteins that increase with aging and are associated with an increased risk of mortality, and (2) to determine if FOXO3 longevity/resilience genotype dampens the expected increase in mortality risk they pose. A total of 4500 serum protein aptamers were quantified using the Somalogic SomaScan proteomics platform in the current study of 975 men aged 71-83 years. Stress proteins associated with mortality were identified. We then used age-adjusted multivariable Cox models to investigate the interaction of stress protein with FOXO3 longevity-associated rs12212067 genotypes. For all the analyses, the p values were corrected for multiple comparisons by false discovery rate. This led to the identification of 44 stress proteins influencing the association of FOXO3 genotype with reduced mortality. Biological pathways were identified for these proteins. Our results suggest that the FOXO3 resilience genotype functions by reducing mortality in pathways related to innate immunity, bone morphogenetic protein signaling, leukocyte migration, and growth factor response.
Assuntos
Longevidade , Proteômica , Masculino , Humanos , Longevidade/genética , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Genótipo , Proteínas de Choque TérmicoRESUMO
Autism spectrum disorder (ASD) is a highly heritable disorder of complex and heterogeneous aetiology. It is primarily characterized by altered cognitive ability including impaired language and communication skills and fundamental deficits in social reciprocity. Despite some notable successes in neuropsychiatric genetics, overall, the high heritability of ASD (~90%) remains poorly explained by common genetic risk variants. However, recent studies suggest that rare genomic variation, in particular copy number variation, may account for a significant proportion of the genetic basis of ASD. We present a large scale analysis to identify candidate genes which may contain low-frequency recessive variation contributing to ASD while taking into account the potential contribution of population differences to the genetic heterogeneity of ASD. Our strategy, homozygous haplotype (HH) mapping, aims to detect homozygous segments of identical haplotype structure that are shared at a higher frequency amongst ASD patients compared to parental controls. The analysis was performed on 1,402 Autism Genome Project trios genotyped for 1 million single nucleotide polymorphisms (SNPs). We identified 25 known and 1,218 novel ASD candidate genes in the discovery analysis including CADM2, ABHD14A, CHRFAM7A, GRIK2, GRM3, EPHA3, FGF10, KCND2, PDZK1, IMMP2L and FOXP2. Furthermore, 10 of the previously reported ASD genes and 300 of the novel candidates identified in the discovery analysis were replicated in an independent sample of 1,182 trios. Our results demonstrate that regions of HH are significantly enriched for previously reported ASD candidate genes and the observed association is independent of gene size (odds ratio 2.10). Our findings highlight the applicability of HH mapping in complex disorders such as ASD and offer an alternative approach to the analysis of genome-wide association data.
Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Haplótipos/genética , Adulto , Criança , Análise por Conglomerados , Estudos de Coortes , Variações do Número de Cópias de DNA , Feminino , Genótipo , Homozigoto , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Núcleo Familiar , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND: Modern medicine is rapidly moving towards a data-driven paradigm based on comprehensive multimodal health assessments. Integrated analysis of data from different modalities has the potential of uncovering novel biomarkers and disease signatures. METHODS: We collected 1385 data features from diverse modalities, including metabolome, microbiome, genetics, and advanced imaging, from 1253 individuals and from a longitudinal validation cohort of 1083 individuals. We utilized a combination of unsupervised machine learning methods to identify multimodal biomarker signatures of health and disease risk. RESULTS: Our method identified a set of cardiometabolic biomarkers that goes beyond standard clinical biomarkers. Stratification of individuals based on the signatures of these biomarkers identified distinct subsets of individuals with similar health statuses. Subset membership was a better predictor for diabetes than established clinical biomarkers such as glucose, insulin resistance, and body mass index. The novel biomarkers in the diabetes signature included 1-stearoyl-2-dihomo-linolenoyl-GPC and 1-(1-enyl-palmitoyl)-2-oleoyl-GPC. Another metabolite, cinnamoylglycine, was identified as a potential biomarker for both gut microbiome health and lean mass percentage. We identified potential early signatures for hypertension and a poor metabolic health outcome. Additionally, we found novel associations between a uremic toxin, p-cresol sulfate, and the abundance of the microbiome genera Intestinimonas and an unclassified genus in the Erysipelotrichaceae family. CONCLUSIONS: Our methodology and results demonstrate the potential of multimodal data integration, from the identification of novel biomarker signatures to a data-driven stratification of individuals into disease subtypes and stages-an essential step towards personalized, preventative health risk assessment.
Assuntos
Genômica/métodos , Síndrome Metabólica/genética , Metabolômica/métodos , Aprendizado de Máquina não Supervisionado , Adulto , Biomarcadores/metabolismo , Genoma Humano , Humanos , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/metabolismo , Metaboloma , MicrobiotaRESUMO
Although considerable progress has been made in dissecting the signaling pathways involved in the innate immune response, it is now apparent that this response can no longer be productively thought of in terms of simple linear pathways. InnateDB (www.innatedb.ca) has been developed to facilitate systems-level analyses that will provide better insight into the complex networks of pathways and interactions that govern the innate immune response. InnateDB is a publicly available, manually curated, integrative biology database of the human and mouse molecules, experimentally verified interactions and pathways involved in innate immunity, along with centralized annotation on the broader human and mouse interactomes. To date, more than 3500 innate immunity-relevant interactions have been contextually annotated through the review of 1000 plus publications. Integrated into InnateDB are novel bioinformatics resources, including network visualization software, pathway analysis, orthologous interaction network construction and the ability to overlay user-supplied gene expression data in an intuitively displayed molecular interaction network and pathway context, which will enable biologists without a computational background to explore their data in a more systems-oriented manner.
Assuntos
Bases de Dados Factuais , Imunidade Inata , Transdução de Sinais/imunologia , Software , Animais , Biologia Computacional/métodos , Humanos , Internet , Biologia de SistemasRESUMO
Obesity is a heterogeneous phenotype that is crudely measured by body mass index (BMI). There is a need for a more precise yet portable method of phenotyping and categorizing risk in large numbers of people with obesity to advance clinical care and drug development. Here, we used non-targeted metabolomics and whole-genome sequencing to identify metabolic and genetic signatures of obesity. We find that obesity results in profound perturbation of the metabolome; nearly a third of the assayed metabolites associated with changes in BMI. A metabolome signature identifies the healthy obese and lean individuals with abnormal metabolomes-these groups differ in health outcomes and underlying genetic risk. Specifically, an abnormal metabolome associated with a 2- to 5-fold increase in cardiovascular events when comparing individuals who were matched for BMI but had opposing metabolome signatures. Because metabolome profiling identifies clinically meaningful heterogeneity in obesity, this approach could help select patients for clinical trials.
Assuntos
Metabolômica/métodos , Obesidade/epidemiologia , Obesidade/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/genética , Fatores de Risco , Gêmeos , Sequenciamento Completo do Genoma/métodosRESUMO
BACKGROUND: Acetaminophen (paracetamol) is one of the most common medications used for management of pain in the world. There is lack of consensus about the mechanism of action, and concern about the possibility of adverse effects on reproductive health. METHODS: We first established the metabolome profile that characterizes use of acetaminophen, and we subsequently trained and tested a model that identified metabolomic differences across samples from 455 individuals with and without acetaminophen use. We validated the findings in a European ancestry adult twin cohort of 1880 individuals (TwinsUK), and in a study of 1235 individuals of African American and Hispanic ancestry. We used genomics to elucidate the mechanisms targeted by acetaminophen. FINDINGS: We identified a distinctive pattern of depletion of sulfated sex hormones with use of acetaminophen across all populations. We used a Mendelian randomization approach to characterize the role of Sulfotransferase Family 2A Member 1 (SULT2A1) as the site of the interaction. Although CYP3A7-CYP3A51P variants also modified levels of some sulfated sex hormones, only acetaminophen use phenocopied the effect of genetic variants of SULT2A1. Overall, acetaminophen use, age, gender and SULT2A1 and CYP3A7-CYP3A51P genetic variants are key determinants of variation in levels of sulfated sex hormones in blood. The effect of taking acetaminophen on sulfated sex hormones was roughly equivalent to the effect of 35years of aging. INTERPRETATION: These findings raise concerns of the impact of acetaminophen use on hormonal homeostasis. In addition, it modifies views on the mechanism of action of acetaminophen in pain management as sulfated sex hormones can function as neurosteroids and modify nociceptive thresholds.
Assuntos
Acetaminofen/efeitos adversos , Hormônios Esteroides Gonadais/metabolismo , Sulfatos/metabolismo , Adulto , Mapeamento Cromossômico , Estudos de Coortes , Análise Discriminante , Feminino , Humanos , Análise dos Mínimos Quadrados , Masculino , Análise da Randomização Mendeliana , Metaboloma , Reprodutibilidade dos Testes , Estudos em Gêmeos como AssuntoRESUMO
Understanding the significance of genetic variants in the noncoding genome is emerging as the next challenge in human genomics. We used the power of 11,257 whole-genome sequences and 16,384 heptamers (7-nt motifs) to build a map of sequence constraint for the human species. This build differed substantially from traditional maps of interspecies conservation and identified regulatory elements among the most constrained regions of the genome. Using new Hi-C experimental data, we describe a strong pattern of coordination over 2 Mb where the most constrained regulatory elements associate with the most essential genes. Constrained regions of the noncoding genome are up to 52-fold enriched for known pathogenic variants as compared to unconstrained regions (21-fold when compared to the genome average). This map of sequence constraint across thousands of individuals is an asset to help interpret noncoding elements in the human genome, prioritize variants and reconsider gene units at a larger scale.
Assuntos
Variação Genética , Genoma Humano , RNA não Traduzido/genética , Mapeamento Cromossômico/métodos , Biologia Computacional , Sequência Conservada , Evolução Molecular , Feminino , Humanos , Masculino , Sequências Reguladoras de Ácido NucleicoRESUMO
Genome-wide association studies (GWASs) have linked genes to various pathological traits. However, the potential contribution of regulatory noncoding RNAs, such as microRNAs (miRNAs), to a genetic predisposition to pathological conditions has remained unclear. We leveraged GWAS meta-analysis data from >188,000 individuals to identify 69 miRNAs in physical proximity to single-nucleotide polymorphisms (SNPs) associated with abnormal levels of circulating lipids. Several of these miRNAs (miR-128-1, miR-148a, miR-130b, and miR-301b) control the expression of key proteins involved in cholesterol-lipoprotein trafficking, such as the low-density lipoprotein (LDL) receptor (LDLR) and the ATP-binding cassette A1 (ABCA1) cholesterol transporter. Consistent with human liver expression data and genetic links to abnormal blood lipid levels, overexpression and antisense targeting of miR-128-1 or miR-148a in high-fat diet-fed C57BL/6J and Apoe-null mice resulted in altered hepatic expression of proteins involved in lipid trafficking and metabolism, and in modulated levels of circulating lipoprotein-cholesterol and triglycerides. Taken together, these findings support the notion that altered expression of miRNAs may contribute to abnormal blood lipid levels, predisposing individuals to human cardiometabolic disorders.
Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Dieta Hiperlipídica , Dislipidemias/genética , MicroRNAs/genética , Receptores de LDL/metabolismo , Triglicerídeos/metabolismo , Animais , Apolipoproteínas E/genética , Colesterol/metabolismo , Estudo de Associação Genômica Ampla , Homeostase/genética , Humanos , Lipoproteínas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Rhabdomyosarcoma, the most common pediatric soft tissue malignancy arises in 2 major histologic forms: embryonal and alveolar. Classically, the alveolar subtype is characterized by a chromosomal translocation t(2;13)(q35;q14) or t(1;13)(p36;q14) fusing the PAX3 or PAX7 gene, respectively, to the FOXO1 gene, although fusion-negative cases of alveolar rhabdomyosarcoma (ARMS) occur; these share considerably more with the genomic profiles and biological behavior of embryonal rhabdomyosarcoma than with fusion-positive ARMS. The current understanding of any additional genetic aberrations in fusion-positive ARMS is limited. In this study, we evaluated tumor-specific copy number alterations in a cohort of fusion-positive ARMSs using high-resolution technology. The results presented here include previously described changes as well as completely novel findings of copy number alterations in BCR and DICER. The study furthermore highlights associations between fusion type and genotype, as well as outcomes and genotype. Rearrangement of PAX7 is strongly associated with copy number alteration of Glypican 5 (GPC5) and moderately with amplification of IGF1R. There is a moderate association between death from/relapse of disease and, on the one hand, amplification of 12q13.3 (DDIT3; Gli1), and on the other hand, copy number alteration of Wnt6 or LRP1B. Gains of both LRP1B and Gli1 in turn are strongly associated with MycN amplification.
Assuntos
RNA Helicases DEAD-box/genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas c-bcr/genética , Rabdomiossarcoma/genética , Ribonuclease III/genética , Adolescente , Criança , Pré-Escolar , Cromossomos Humanos Par 14/genética , Estudos de Coortes , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Feminino , Amplificação de Genes , Glipicanas/genética , Humanos , Lactente , Neoplasias Pulmonares/mortalidade , Masculino , Proteína Proto-Oncogênica N-Myc , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Proteínas de Fusão Oncogênica/genética , Fator de Transcrição PAX7/genética , Fatores de Transcrição Box Pareados/genética , Polimorfismo de Nucleotídeo Único , Receptor IGF Tipo 1/genética , Receptores de LDL/genética , Rabdomiossarcoma/mortalidade , Análise de Sobrevida , Transativadores/genética , Fator de Transcrição CHOP/genética , Proteínas Wnt/genética , Proteína GLI1 em Dedos de ZincoRESUMO
Recently, several neutralizing anti-HIV antibodies have been isolated from memory B cells of HIV-infected individuals. Despite extensive evidence of B cell dysfunction in HIV disease, little is known about the cells from which these rare HIV-specific antibodies originate. Accordingly, we used HIV envelope gp140 and CD4 or coreceptor (CoR) binding site (bs) mutant probes to evaluate HIV-specific responses in peripheral blood B cells of HIV-infected individuals at various stages of infection. In contrast to non-HIV responses, HIV-specific responses against gp140 were enriched within abnormal B cells, namely activated and exhausted memory subsets, which are largely absent in the blood of uninfected individuals. Responses against the CoRbs, which is a poorly neutralizing epitope, arose early, whereas those against the well-characterized neutralizing epitope CD4bs were delayed and infrequent. Enrichment of the HIV-specific response within resting memory B cells, the predominant subset in uninfected individuals, did occur in certain infected individuals who maintained low levels of plasma viremia and immune activation with or without antiretroviral therapy. The distribution of HIV-specific responses among memory B cell subsets was corroborated by transcriptional analyses. Taken together, our findings provide valuable insight into virus-specific B cell responses in HIV infection and demonstrate that memory B cell abnormalities may contribute to the ineffectiveness of the antibody response in infected individuals.
Assuntos
Subpopulações de Linfócitos B/imunologia , Infecções por HIV/imunologia , Memória Imunológica , Doença Aguda , Fármacos Anti-HIV/uso terapêutico , Anticorpos Neutralizantes/sangue , Subpopulações de Linfócitos B/metabolismo , Subpopulações de Linfócitos B/patologia , Doença Crônica , Anticorpos Anti-HIV/sangue , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/genética , Infecções por HIV/virologia , Humanos , Transcriptoma , Carga Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologiaRESUMO
Ewing sarcoma family tumors are aggressive sarcomas of childhood and adolescence with continuing poor outcomes. Decades of research on the characteristics of the often solitary-known oncogenic-genomic aberration in Ewing sarcoma family tumors, namely a TET-ETS fusion, have provided little advancement in the understanding of the molecular pathogenesis of Ewing sarcoma or treatment thereof. In this study, the high-resolution single-nucleotide polymorphism technology was used to identify additional/secondary copy-number alterations (CNAs) in Ewing sarcoma that might elucidate the aggressive biology of this sarcoma. We compared paired constitutional and tumor DNA samples. Commonly known genomic alterations including gain of 1q and chromosome 8 were the most frequently detected changes in this study. In addition, deletions and loss of heterozygosity were identified in 10q, 11p, and 17p. Furthermore, tumor-specific CNAs were identified not only in genes previously known to be of interest, including CDKN2A, but also in genes not previously associated with Ewing sarcoma, including SOX6 and PTEN. Selected array-based findings were confirmed by fluorescence in situ hybridization, immunohistochemical studies, or sequencing. The results highlight an unexpected level of cytogenetic complexity associated with several of the samples, 2 of which contained TP53 mutations. In summary, our high-resolution genome-wide copy-number data identify several novel CNAs associated with Ewing sarcoma, which are promising targets for novel therapeutic strategies in this aggressive sarcoma.
Assuntos
Neoplasias Ósseas/diagnóstico , Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Sarcoma de Ewing/diagnóstico , Sarcoma de Ewing/genética , Adolescente , Adulto , Idoso , Neoplasias Ósseas/genética , Criança , Pré-Escolar , Cromossomos Humanos Par 8/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Feminino , Deleção de Genes , Heterozigoto , Humanos , Hibridização in Situ Fluorescente , Perda de Heterozigosidade , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , PTEN Fosfo-Hidrolase/genética , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Fatores de Transcrição SOXD/genética , Proteína Supressora de Tumor p53/genética , Adulto JovemRESUMO
Knowledge of human origins, migrations, and expansions is greatly enhanced by the availability of large datasets of genetic information from different populations and by the development of bioinformatic tools used to analyze the data. We present Ancestry Mapper, which we believe improves on existing methods, for the assignment of genetic ancestry to an individual and to study the relationships between local and global populations. The principle function of the method, named Ancestry Mapper, is to give each individual analyzed a genetic identifier, made up of just 51 genetic coordinates, that corresponds to its relationship to the HGDP reference population. As a consequence, the Ancestry Mapper Id (AMid) has intrinsic biological meaning and provides a tool to measure similarity between world populations. We applied Ancestry Mapper to a dataset comprised of the HGDP and HapMap data. The results show distinctions at the continental level, while simultaneously giving details at the population level. We clustered AMids of HGDP/HapMap and observe a recapitulation of human migrations: for a small number of clusters, individuals are grouped according to continental origins; for a larger number of clusters, regional and population distinctions are evident. Calculating distances between AMids allows us to infer ancestry. The number of coordinates is expandable, increasing the power of Ancestry Mapper. An R package called Ancestry Mapper is available to apply this method to any high density genomic data set.