Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1864(8): 2610-2622, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29684588

RESUMO

Retinal pigment epithelium (RPE) alterations in age-related macular degeneration occur in patches, potentially involving long-distance communication between damaged and healthy areas. Communication along the epithelium might be mediated by extracellular vesicles (EVs). To test this hypothesis, EVs were collected from supernatants of polarized ARPE-19 and primary porcine RPE monolayers for functional and biochemical assays. EVs from oxidatively stressed donor cells reduced barrier function in recipient RPE monolayers when compared to control EVs. The effect on barrier function was dependent on EV uptake, which occurred rapidly with EVs from oxidatively stressed donor cells. Mass spectrometry-based proteomic analysis of EVs identified HDAC6, which is known to reduce tight junction stability. Activity assays confirmed the presence of HDAC6 in EVs, and EV transfer assays using HDAC6 inhibitors confirmed its effect in monolayers. These findings demonstrate that EVs can communicate stress messages to healthy RPE cells, potentially contributing to RPE dysfunction.


Assuntos
Comunicação Celular , Vesículas Extracelulares/metabolismo , Desacetilase 6 de Histona/metabolismo , Degeneração Macular/metabolismo , Estresse Oxidativo , Epitélio Pigmentado da Retina/metabolismo , Animais , Linhagem Celular , Vesículas Extracelulares/patologia , Humanos , Degeneração Macular/patologia , Epitélio Pigmentado da Retina/patologia , Suínos
2.
Artigo em Inglês | MEDLINE | ID: mdl-20007262

RESUMO

Root extracts of Withania somnifera (Ashwagandha) are commonly used as a remedy for a variety of ailments and a general tonic for overall health and longevity in the Indian traditional medicine system, Ayurveda. We undertook a study to investigate the anti-proliferative and differentiation-inducing activities in the water extract of Ashwagandha leaves (ASH-WEX) by examining in glioma cells. Preliminary detection for phytochemicals was performed by thin-layer chromatography. Cytotoxicity was determined using trypan blue and MTT assays. Expression level of an hsp70 family protein (mortalin), glial cell differentiation marker [glial fibrillary acidic protein (GFAP)] and neural cell adhesion molecule (NCAM) were analyzed by immunocytochemistry and immunoblotting. Anti-migratory assay was also done using wound-scratch assay. Expression levels of mortalin, GFAP and NCAM showed changes, subsequent to the treatment with ASH-WEX. The data support the existence of anti-proliferative, differentiation-inducing and anti-migratory/anti-metastasis activities in ASH-WEX that could be used as potentially safe and complimentary therapy for glioma.

3.
Biochim Biophys Acta Gen Subj ; 1865(4): 129798, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33217521

RESUMO

PURPOSE: Extracellular vesicles (EVs) are predicted to represent the internal state of cells. In polarized RPE monolayers, EVs can mediate long-distance communication, requiring endocytosis via protein-protein interactions. EV uptake from oxidatively stressed donor cells triggers loss in transepithelial resistance (TER) in recipient monolayers mediated by HDAC6. Here, we examine EVs released from RPE cells with identical nuclear genes but different mitochondrial (mt)DNA haplogroups (H, J). J-cybrids produce less ATP, and the J-haplogroup is associated with a higher risk for age-related macular degeneration. METHODS: Cells were grown as mature monolayers to either collect EVs from apical surfaces or to serve as naïve recipient cells. Transfer assays, transferring EVs to a recipient monolayer were performed, monitoring TER and EV-uptake. The presence of known EV surface proteins was quantified by protein chemistry. RESULTS: H- and J-cybrids were confirmed to exhibit different levels of TER and energy metabolism. EVs from J-cybrids reduced TER in recipient ARPE-19 cells, whereas EVs from H-cybrids were ineffective. TER reduction was mediated by HDAC6 activity, and EV uptake required interaction between integrin and its ligands and surface proteoglycans. Protein quantifications confirmed elevated levels of fibronectin and annexin A2 on J-cybrid EVs. CONCLUSIONS: We speculate that RPE EVs have a finite set of ligands (membrane proteoglycans and integrins and/or annexin A2) that are elevated in EVs from stressed cells; and that if EVs released by the RPE could be captured from serum, that they might provide a disease biomarker of RPE-dependent diseases.


Assuntos
DNA Mitocondrial/metabolismo , Vesículas Extracelulares/metabolismo , Mitocôndrias/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transporte Biológico , Linhagem Celular , Metabolismo Energético , Humanos , Epitélio Pigmentado da Retina/citologia
4.
Biochim Biophys Acta Mol Basis Dis ; 1866(3): 165608, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31740401

RESUMO

PURPOSE: Extracellular vesicles (EVs) can mediate long-distance communication in polarized RPE monolayers. Specifically, EVs from oxidatively stressed donor cells (stress EVs) rapidly reduced barrier function (transepithelial resistance, TER) in naïve recipient monolayers, when compared to control EVs. This effect on TER was dependent on dynamin-mediated EV uptake, which occurred rapidly with EVs from oxidatively stressed donor cells. Here, we further determined molecular mechanisms involved in uptake of EVs by naïve RPE cells. METHODS: RPE cells were grown as monolayers in media supplemented with 1% FBS followed by transfer to FBS-free media. Cultures were used to collect control or stress EVs upon treatment with H2O2, others served as naïve recipient cells. In recipient monolayers, TER was used to monitor EV-uptake-based activity, live-cell imaging confirmed uptake. EV surface proteins were quantified by protein chemistry. RESULTS: Clathrin-independent, lipid raft-mediated internalization was excluded as an uptake mechanism. Known ligand-receptor interactions involved in clathrin-dependent endocytosis include integrins and proteoglycans. Desialylated glycans and integrin-receptors on recipient cells were necessary for EV uptake and subsequent reduction of TER in recipient cells. Protein quantifications confirmed elevated levels of ligands and neuraminidase on stress EVs. However, control EVs could confer activity in the TER assay if exogenous neuraminidase or additional ligand was provided. CONCLUSIONS: In summary, while EVs from both stressed cells and control contain cargo to communicate stress messages to naive RPE cells, stress EVs contain surface ligands that confer rapid uptake by recipient cells. We propose that EVs potentially contribute to RPE dysfunction in aging and disease.


Assuntos
Transporte Biológico/fisiologia , Células Epiteliais/metabolismo , Vesículas Extracelulares/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Pigmentos da Retina/metabolismo , Linhagem Celular , Clatrina/metabolismo , Endocitose/fisiologia , Humanos , Peróxido de Hidrogênio/metabolismo , Ligantes , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/fisiologia
5.
Cancer Sci ; 100(9): 1740-7, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19575749

RESUMO

Ashwagandha (Withania somnifera) is widely used in the Indian traditional system of medicine, Ayurveda. Although it is claimed to have a large variety of health-promoting effects, including therapeutic effects on stress and disease, the mechanisms of action have not yet been determined. In the present study, we aimed to investigate the growth inhibition and differentiation potential of the alcoholic extract of Ashwagandha leaves (i-Extract), its different constituents (Withaferin A, Withanone, Withanolide A) and their combinations on glioma (C6 and YKG1) cell lines. Withaferin A, Withanone, Withanolide A and i-Extract markedly inhibited the proliferation of glioma cells in a dose-dependent manner and changed their morphology toward the astrocytic type. Molecular analysis revealed that the i-Extract and some of its components caused enhanced expression of glial fibrillary acidic protein, change in the immunostaining pattern of mortalin from perinuclear to pancytoplasmic, delay in cell migration, and increased expression of neuronal cell adhesion molecules. The data suggest that the i-Extract and its components have the potential to induce senescence-like growth arrest and differentiation in glioma cells. These assays led us to formulate a unique combination formula of i-Extract components that caused enhanced differentiation of glial cells.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Fitoterapia , Extratos Vegetais/uso terapêutico , Withania/química , Western Blotting , Ciclo Celular/efeitos dos fármacos , Quimioterapia Combinada , Ergosterol/análogos & derivados , Ergosterol/uso terapêutico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Folhas de Planta/química , Células Tumorais Cultivadas , Vitanolídeos
6.
Integr Cancer Ther ; 17(3): 867-873, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29390900

RESUMO

Besides honey, honeybees make a sticky substance (called propolis/bee glue) by mixing saliva with poplar tree resin and other botanical sources. It is known to be rich in bioactivities of which the anticancer activity is most studied. Caffeic acid phenethyl ester (CAPE) is a key anticancer component in New Zealand propolis. We have earlier investigated the molecular mechanism of anticancer activity in CAPE and reported that it activates DNA damage signaling in cancer cells. CAPE-induced growth arrest of cells was mediated by downregulation of mortalin and activation of p53 tumor suppressor protein. When antitumor and antimetastasis activities of CAPE were examined in vitro and in vivo, we failed to find significant activities, which was contrary to our expectations. On careful examination, it was revealed that CAPE is unstable and rather gets easily degraded into caffeic acid by secreted esterases. Interestingly, when CAPE was complexed with γ-cyclodextrin (γCD) the activities were significantly enhanced. In the present study, we report that the CAPE-γCD complex with higher cytotoxicity to a wide range of cancer cells is stable in acidic milieu and therefore recommended as an anticancer amalgam. We also report a method for preparation of stable and less-pungent powder of propolis that could be conveniently used for health and therapeutic benefits.


Assuntos
Antineoplásicos/farmacologia , Ácidos Cafeicos/farmacologia , Álcool Feniletílico/análogos & derivados , Própole/farmacologia , gama-Ciclodextrinas/farmacologia , Células A549 , Animais , Antineoplásicos/uso terapêutico , Apiterapia , Ácidos Cafeicos/química , Ácidos Cafeicos/uso terapêutico , Combinação de Medicamentos , Feminino , Células HeLa , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Álcool Feniletílico/química , Álcool Feniletílico/farmacologia , Álcool Feniletílico/uso terapêutico , Própole/uso terapêutico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , gama-Ciclodextrinas/química , gama-Ciclodextrinas/uso terapêutico
7.
Mol Neurobiol ; 54(2): 1392-1403, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-26843114

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder caused by mutations in the ABCD1 gene, leading to a defect in the peroxisomal adrenoleukodystrophy protein (ALDP), which inhibits the ß-oxidation of very long chain fatty acids (VLCFAs). It is a complex disease where the same mutation in the peroxisomal ABCD1 can lead to clinically diverse phenotypes ranging from the fatal disorder of cerebral ALD (cALD) to mild adult disorder of adrenomyeloneuropathy (AMN). This suggests a role of epigenetic factors/modifier genes in disease progression of X-ALD which is not understood at present. To examine the possible role of microRNA (miRNA) in X-ALD disease mechanisms for differences in cALD and AMN phenotype, we profiled 1008 known miRNA in cALD, AMN, and normal human skin fibroblasts using miScript miRNA PCR array (Qiagen) and selected miRNAs which had differential expression in cALD and AMN fibroblasts. Eleven miRNA which were differentially regulated in cALD and AMN fibroblasts were identified. miR-196a showed a significant differential expression between cALD and AMN and is further characterized for target gene regulation. The predicted role of miR-196a in inhibition of inflammatory signaling factors (IKKα and IKKß) and ELOVL1 expression suggests the pathological role of altered expression of miR-196a. This study indicates that miR-196a participated in differential regulation of ELOVL1 and inflammatory response between cALD as compared to AMN and may be a possible biomarker to differentiate between cALD and AMN.


Assuntos
Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Perfilação da Expressão Gênica/métodos , MicroRNAs/biossíntese , MicroRNAs/genética , Adrenoleucodistrofia/diagnóstico , Adulto , Fatores Etários , Animais , Biomarcadores/metabolismo , Células Cultivadas , Criança , Expressão Gênica , Humanos , Masculino , Ratos
8.
PLoS One ; 10(3): e0120554, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25789768

RESUMO

BACKGROUND: Ashwagandha, a traditional Indian herb, has been known for its variety of therapeutic activities. We earlier demonstrated anticancer activities in the alcoholic and water extracts of the leaves that were mediated by activation of tumor suppressor functions and oxidative stress in cancer cells. Low doses of these extracts were shown to possess neuroprotective activities in vitro and in vivo assays. METHODOLOGY/PRINCIPAL FINDINGS: We used cultured glioblastoma and neuroblastoma cells to examine the effect of extracts (alcoholic and water) as well as their bioactive components for neuroprotective activities against oxidative stress. Various biochemical and imaging assays on the marker proteins of glial and neuronal cells were performed along with their survival profiles in control, stressed and recovered conditions. We found that the extracts and one of the purified components, withanone, when used at a low dose, protected the glial and neuronal cells from oxidative as well as glutamate insult, and induced their differentiation per se. Furthermore, the combinations of extracts and active component were highly potent endorsing the therapeutic merit of the combinational approach. CONCLUSION: Ashwagandha leaf derived bioactive compounds have neuroprotective potential and may serve as supplement for brain health.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ácido Glutâmico/toxicidade , Humanos , Peróxido de Hidrogênio/toxicidade , Microscopia de Fluorescência , Fármacos Neuroprotetores/química , Extratos Vegetais/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Ratos , Withania/química , Withania/metabolismo
9.
Mol Cancer Ther ; 13(12): 2930-40, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25236891

RESUMO

Ashwagandha is an important herb used in the Indian system of traditional home medicine, Ayurveda. Alcoholic extract (i-Extract) from its leaves and its component, withanone, were previously shown to possess anticancer activity. In the present study, we developed a combination of withanone and withaferin A, major withanolides in the i-Extract, that retained the selective cancer cell killing activity and found that it also has significant antimigratory, -invasive, and -angiogenic activities, in both in vitro and in vivo assays. Using bioinformatics and biochemical approaches, we demonstrate that these phytochemicals caused downregulation of migration-promoting proteins hnRNP-K, VEGF, and metalloproteases and hence are candidate natural drugs for metastatic cancer therapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/metabolismo , Extratos Vegetais/química , Triterpenos/farmacologia , Vitanolídeos/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/antagonistas & inibidores , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Modelos Moleculares , Conformação Molecular , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Reprodutibilidade dos Testes , Triterpenos/química , Carga Tumoral/efeitos dos fármacos , Vitanolídeos/química , Ensaios Antitumorais Modelo de Xenoenxerto
10.
PLoS One ; 8(10): e77189, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130852

RESUMO

BACKGROUND: Cancer is a leading cause of death accounting for 15-20% of global mortality. Although advancements in diagnostic and therapeutic technologies have improved cancer survival statistics, 75% of the world population live in underdeveloped regions and have poor access to the advanced medical remedies. Natural therapies hence become an alternative choice of treatment. Ashwagandha, a tropical herb used in Indian Ayurvedic medicine, has a long history of its health promoting and therapeutic effects. In the present study, we have investigated an anticancer activity in the water extract of Ashwagandha leaves (ASH-WEX). METHODOLOGY/PRINCIPAL FINDINGS: Anticancer activity in the water extract of Ashwagandha leaves (ASH-WEX) was detected by in vitro and in vivo assays. Bioactivity-based size fractionation and NMR analysis were performed to identify the active anticancer component(s). Mechanism of anticancer activity in the extract and its purified component was investigated by biochemical assays. We report that the ASH-WEX is cytotoxic to cancer cells selectively, and causes tumor suppression in vivo. Its active anticancer component was identified as triethylene glycol (TEG). Molecular analysis revealed activation of tumor suppressor proteins p53 and pRB by ASH-WEX and TEG in cancer cells. In contrast to the hypophosphorylation of pRB, decrease in cyclin B1 and increase in cyclin D1 in ASH-WEX and TEG-treated cancer cells (undergoing growth arrest), normal cells showed increase in pRB phosphorylation and cyclin B1, and decrease in cyclin D1 (signifying their cell cycle progression). We also found that the MMP-3 and MMP-9 that regulate metastasis were down regulated in ASH-WEX and TEG-treated cancer cells; normal cells remained unaffected. CONCLUSION: We provide the first molecular evidence that the ASH-WEX and TEG have selective cancer cell growth arrest activity and hence may offer natural and economic resources for anticancer medicine.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Água/química , Withania/química , Animais , Antineoplásicos/análise , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Extratos Vegetais/análise , Extratos Vegetais/isolamento & purificação , Solventes/química , Ensaios Antitumorais Modelo de Xenoenxerto
11.
PLoS One ; 7(9): e44419, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22973447

RESUMO

BACKGROUND AND PURPOSE: Withanolides are naturally occurring chemical compounds. They are secondary metabolites produced via oxidation of steroids and structurally consist of a steroid-backbone bound to a lactone or its derivatives. They are known to protect plants against herbivores and have medicinal value including anti-inflammation, anti-cancer, adaptogenic and anti-oxidant effects. Withaferin A (Wi-A) and Withanone (Wi-N) are two structurally similar withanolides isolated from Withania somnifera, also known as Ashwagandha in Indian Ayurvedic medicine. Ashwagandha alcoholic leaf extract (i-Extract), rich in Wi-N, was shown to kill cancer cells selectively. Furthermore, the two closely related purified phytochemicals, Wi-A and Wi-N, showed differential activity in normal and cancer human cells in vitro and in vivo. We had earlier identified several genes involved in cytotoxicity of i-Extract in human cancer cells by loss-of-function assays using either siRNA or randomized ribozyme library. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we have employed bioinformatics tools on four genes, i.e., mortalin, p53, p21 and Nrf2, identified by loss-of-function screenings. We examined the docking efficacy of Wi-N and Wi-A to each of the four targets and found that the two closely related phytochemicals have differential binding properties to the selected cellular targets that can potentially instigate differential molecular effects. We validated these findings by undertaking parallel experiments on specific gene responses to either Wi-N or Wi-A in human normal and cancer cells. We demonstrate that Wi-A that binds strongly to the selected targets acts as a strong cytotoxic agent both for normal and cancer cells. Wi-N, on the other hand, has a weak binding to the targets; it showed milder cytotoxicity towards cancer cells and was safe for normal cells. The present molecular docking analyses and experimental evidence revealed important insights to the use of Wi-A and Wi-N for cancer treatment and development of new anti-cancer phytochemical cocktails.


Assuntos
Modelos Moleculares , Extratos Vegetais/metabolismo , Folhas de Planta/química , Triterpenos/metabolismo , Withania/química , Vitanolídeos/metabolismo , Western Blotting , Morte Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Biologia Computacional , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Imunoprecipitação , Ayurveda , Estrutura Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Sais de Tetrazólio , Tiazóis , Triterpenos/química , Triterpenos/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Vitanolídeos/química , Vitanolídeos/farmacologia , beta-Galactosidase
12.
PLoS One ; 6(11): e27265, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22096544

RESUMO

BACKGROUND: Scopolamine is a well-known cholinergic antagonist that causes amnesia in human and animal models. Scopolamine-induced amnesia in rodent models has been widely used to understand the molecular, biochemical, behavioral changes, and to delineate therapeutic targets of memory impairment. Although this has been linked to the decrease in central cholinergic neuronal activity following the blockade of muscarinic receptors, the underlying molecular and cellular mechanism(s) particularly the effect on neuroplasticity remains elusive. In the present study, we have investigated (i) the effects of scopolamine on the molecules involved in neuronal and glial plasticity both in vivo and in vitro and (ii) their recovery by alcoholic extract of Ashwagandha leaves (i-Extract). METHODOLOGY/PRINCIPAL FINDINGS: As a drug model, scopolamine hydrobromide was administered intraperitoneally to mice and its effect on the brain function was determined by molecular analyses. The results showed that the scopolamine caused downregulation of the expression of BDNF and GFAP in dose and time dependent manner, and these effects were markedly attenuated in response to i-Extract treatment. Similar to our observations in animal model system, we found that the scopolamine induced cytotoxicity in IMR32 neuronal and C6 glioma cells. It was associated with downregulation of neuronal cell markers NF-H, MAP2, PSD-95, GAP-43 and glial cell marker GFAP and with upregulation of DNA damage--γH2AX and oxidative stress--ROS markers. Furthermore, these molecules showed recovery when cells were treated with i-Extract or its purified component, withanone. CONCLUSION: Our study suggested that besides cholinergic blockade, scopolamine-induced memory loss may be associated with oxidative stress and Ashwagandha i-Extract, and withanone may serve as potential preventive and therapeutic agents for neurodegenerative disorders and hence warrant further molecular analyses.


Assuntos
Encéfalo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Escopolamina/toxicidade , Triterpenos/farmacologia , Withania/química , Animais , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Proteína Glial Fibrilar Ácida , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Vitanolídeos
13.
PLoS One ; 5(10): e13536, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20975835

RESUMO

BACKGROUND AND PURPOSE: Ashwagandha is a popular Ayurvedic herb used in Indian traditional home medicine. It has been assigned a variety of health-promoting effects of which the mechanisms remain unknown. We previously reported the selective killing of cancer cells by leaf extract of Ashwagandha (i-Extract) and its purified component Withanone. In the present study, we investigated its mechanism by loss-of-function screening (abrogation of i-Extract induced cancer cell killing) of the cellular targets and gene pathways. METHODOLOGY/PRINCIPAL FINDINGS: Randomized ribozyme library was introduced into cancer cells prior to the treatment with i-Extract. Ribozymes were recovered from cells that survived the i-Extract treatment. Gene targets of the selected ribozymes (as predicted by database search) were analyzed by bioinformatics and pathway analyses. The targets were validated for their role in i-Extract induced selective killing of cancer cells by biochemical and molecular assays. Fifteen gene-targets were identified and were investigated for their role in specific cancer cell killing activity of i-Extract and its two major components (Withaferin A and Withanone) by undertaking the shRNA-mediated gene silencing approach. Bioinformatics on the selected gene-targets revealed the involvement of p53, apoptosis and insulin/IGF signaling pathways linked to the ROS signaling. We examined the involvement of ROS-signaling components (ROS levels, DNA damage, mitochondrial structure and membrane potential) and demonstrate that the selective killing of cancer cells is mediated by induction of oxidative stress. CONCLUSION: Ashwagandha leaf extract and Withanone cause selective killing of cancer cells by induction of ROS-signaling and hence are potential reagents that could be recruited for ROS-mediated cancer chemotherapy.


Assuntos
Extratos Vegetais/farmacologia , Folhas de Planta/química , Transdução de Sinais/efeitos dos fármacos , Withania/química , Linhagem Celular Tumoral , Humanos , Espécies Reativas de Oxigênio/metabolismo
14.
J Biol Chem ; 284(3): 1664-72, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19001376

RESUMO

The tumor suppressor protein, p53, is central to the pathways that monitor the stress, DNA damage repair, cell cycle, aging, and cancer. Highly complex p53 networks involving its upstream sensors and regulators, downstream effectors and regulatory feedback loops have been identified. CARF (Collaborator of ARF) was shown to enhance ARF-dependent and -independent wild-type p53 function. Here we report that (i) CARF overexpression causes premature senescence of human fibroblasts, (ii) it is vital for replicative and stress-induced senescence, and (iii) the lack of CARF function causes aneuploidy and apoptosis. We provide evidence that CARF plays a dual role in regulating p53-mediated senescence and apoptosis, the two major tumor suppressor mechanisms.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Senescência Celular/fisiologia , Fibroblastos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Fibroblastos/citologia , Células HeLa , Humanos , Proteína Supressora de Tumor p53/genética
15.
J Gerontol A Biol Sci Med Sci ; 64(10): 1031-8, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19587106

RESUMO

Ashwagandha is an Ayurvedic shrub that forms a common ingredient of health supplements, tonics, and Indian home remedies designed to promote health and quality of life. Though sustained through experience and history, there are only a limited laboratory studies and experimental evidence to its effects. In our efforts to characterize Ashwagandha activities and their molecular mechanisms, we initially prepared leaf extract of Ashwagandha (i-Extract) that showed tumor-inhibitory activity. In the present study, we demonstrate that a major component of i-Extract and withanone (i-Factor) protected the normal human fibroblasts against the toxicity caused by withaferin A. It increased the in vitro division potential of normal human cells that appeared to be mediated by decreased accumulation of molecular damage, downregulation of the senescence-specific beta-galactosidase activity and the senescence marker protein, p21(WAF-1), protection against oxidative damage, and induction of proteasomal activity. To the best of our knowledge, we provide the first example of phytochemical(s) (i-Extract and withanone) that have both anticancer and antiaging activities and point to the molecular link between aging and cancer.


Assuntos
Senescência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Withania , Vitanolídeos/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Técnicas de Cultura de Células , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fibroblastos/patologia , Fibroblastos/fisiologia , Humanos , Estresse Oxidativo/fisiologia , Folhas de Planta , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Ligação a RNA/metabolismo , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA