RESUMO
BACKGROUND: Sesame is an ancient oilseed crop, known for its high oil content and quality. Its sensitivity to drought at early seedling stage is one of the limiting factors affecting its world-wide growth and productivity. Among plant specific transcription factors, the association of HD-ZIPs with sesame drought responses at early seedling stage is not well-established yet and is very important to develop our molecular understanding on sesame drought tolerance. METHODS AND RESULTS: In this study, total 61 sesame HD-ZIP proteins were identified, based on their protein sequence homology with Arabidopsis and protein domain(s) architecture prediction, followed by their phylogenetic, conserved domain(s) motifs and gene structure analyses to classify them into four classes (HD-ZIP Class I-IV). HD-ZIP Class I was also subdivided into four subgroups: α (SiHZ25, SiHZ43, SiHZ9 and SiHZ16), ß1 (SiHZ10, SiHZ30, SiHZ32 and SiHZ26), ß2 (SiHZ42 and SiHZ45) and γ (SiHZ17, SiHZ7 and SiHZ35) by a comparative phylogenetic analysis of sesame with Arabidopsis and maize. Afterwards, twenty-one days old sesame seedlings were exposed to drought stress by withholding water for 7 days (when soil moisture content reduced to ~16%) and gene expression of HD-ZIP Class I (13 members) was performed in well- watered (control) and drought stressed seedlings. The gene expression analysis showed that the expressions of SiHZ7 (6.8 fold) and SiHZ35 (2.6 fold) from γ subgroup were significantly high in drought seedlings. CONCLUSIONS: This study is useful in demonstrating the role of SiHD-ZIP Class I in sesame drought responses at early seedling stage and to develop its novel drought tolerant varieties.
Assuntos
Sesamum , Desidratação/genética , Desidratação/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/genética , Plântula/metabolismo , Sesamum/genética , Sesamum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Mitochondrial sirtuins (SIRT3, SIRT4, SIRT5) are post-translational modifiers that regulate energy production, body homeostasis and mitochondrial activities via different substrates in response to environmental stressors. The present study aimed at assessing the expression of SIRT3, SIRT4, and SIRT5 in the semen of infertile men. Expression analysis was performed using q-RT PCR. All mitochondrial sirtuin genes were significantly down-regulated in the semen of infertile men compared to fertile men. Mitochondrial sirtuin genes expression levels were correlated with mitochondrial HSP90 expression. HSP90 expression was positively correlated with SIRT3, SIRT4 and SIRT5 expression in the semen of fertile men, while a negative correlation was observed between HSP90 in the semen of infertile men and mitochondrial sirtuin genes in the semen of fertile men. These data suggest that dysregulation of mitochondrial sirtuin genes causes mitochondrial dysfunction due to stress, which appears to be associated with human male infertility by compromising functional and structural sperm integrity.
Assuntos
Infertilidade Masculina , Proteínas Mitocondriais , Sirtuínas , Humanos , Infertilidade Masculina/genética , Masculino , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Sirtuína 3 , Sirtuínas/genéticaRESUMO
Male infertility is a major problem with important socioeconomic consequences. It is associated with several pathological factors, including but not limited to endocrine disruption as a result of environmental pollution and the alarming decline in sperm count over the decades is indicative of involvement of many environmental and lifestyle changes around the globe. Organochlorine pollutants such as dichlorodiphenyltrichlorethanes (DDTs), polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) disrupt male reproductive system but the exact effect of environmental exposure on semen parameters in human is still not clear. This study was designed to monitor PCBs, DDTs and HCB in hair, urine and serum samples of infertile and healthy fertile men. Solid-phase microextraction gas chromatography-mass spectrometry (SPME/GC-MS) was used to monitor analytes. All tested compounds were detected, indicating recent use/persistent accumulation. Hair samples revealed no significant association with serum/urine concentrations of the analytes, while serum/urine concentrations were significantly correlated positively. Concentrations were higher in serum compared to other samples. The levels of organochlorine pollutants were higher in infertile men compared to controls with few exceptions. Among PCBs, and DDTs, PCB-153 and pp'-DDT were detected in highest concentrations, respectively. op'-DDT and pp'-DDT levels were significantly higher in infertile men compared to controls. HCB was significantly correlated negatively with sperm motility in all samples. Serum concentrations of all compounds were higher in men with defective semen parameters compared to normospermics. Serum was the best biological sample for assessing health outcomes in relation to exposure levels.
Assuntos
Poluentes Ambientais , Hidrocarbonetos Clorados , Bifenilos Policlorados , DDT/análise , Poluentes Ambientais/análise , Humanos , Hidrocarbonetos Clorados/análise , Masculino , Paquistão , Bifenilos Policlorados/análise , Sêmen/química , Motilidade dos EspermatozoidesRESUMO
Arsenic poses a profound health risk including male reproductive dysfunction upon prolonged exposure. Histone methylation is an important epigenetic driver; however, its role in arsenic- induced steroidogenic pathogenesis remains obscure. In current study, we investigated the effect of histone H3K9 tri-methylation (H3K9me3) on expression pattern of steroidogenic genes in rat testis after long-term arsenic exposure. Our results revealed that arsenic exposure down-regulated the mRNA expressions of all studied steroidogenic genes (Lhr, Star, P450scc, Hsd3b, Cyp17a1, Hsd17b and Arom). Moreover, arsenic significantly increased the H3K9me3 level in rat testis. The plausible explanation of increased H3K9me3 was attributable to the up-regulation of histone H3K9me3 methyltransferase, Suv39h1 and down-regulation of demethylase, Jmjd2a. Since H3K9me3 activation leads to gene repression, we further investigated whether the down-regulation of steroidogenic genes was ascribed to the increased H3K9me3 level. To elucidate this, we determined the H3K9me3 levels in steroidogenic gene promoters, which also showed significant increase of H3K9me3 in the investigated regions after arsenic exposure. In conclusion, arsenic exposure suppressed the steroidogenic gene expression by activating H3K9me3 status, which contributed to steroidogenic inhibition in rat testis.
Assuntos
Arsênio/toxicidade , Metilação de DNA/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Histonas/metabolismo , Esteroides/biossíntese , Testículo/efeitos dos fármacos , Animais , Arsênio/metabolismo , Regulação para Baixo , Histona Desmetilases/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Testículo/metabolismo , Testosterona/biossínteseRESUMO
Gene expression is tightly regulated in time and space through a multitude of factors consisting of signaling molecules. Soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNARE) are membrane proteins responsible for the intercellular trafficking of signals through endocytosis and exocytosis of vesicles. Altered expression of SNARE proteins in cellular communication is the major hallmark of cancer phenotypes as indicated in recent studies. SNAREs play an important role in maintaining cell growth and epithelial membrane permeability of the bladder and are not only involved in cancer progression but also metastatic cell invasion through SNARE-mediated trafficking. Synaptobrevin2/Vesicle associated membrane protein-2 (v-SNARE) and Syntaxin (t-SNARE) form a vesicular docking complex during endocytosis. Some earlier studies have shown a critical role of SNARE in colon, lungs, and breast cancer progression and metastasis. In this study, we analyzed the relative expression of the STX1A and VAMP2 (SYB2) for their possible association in the progression and metastasis of bladder cancer. The profiling of the genes showed a significant increase in STX1A and VAMP2 expression (p < 0.001) in high-grade tumor cells compared to normal and low-grade tumors. These findings suggest that elevated expression of STX1A and VAMP2 might have caused the abnormal progression and invasion of cancer cells leading to the transformation of cells into high-grade tumor in bladder cancer.
RESUMO
The Indus River, the lifeline of Pakistan's economy and its tributaries, derives most of water flow from the upper Indus basin comprised of Karakorum, Himalaya, and Hindu Kush mountain ranges, thus making this area important in climate change studies. We analyzed the records of climatic variables including temperature, precipitation, and relative humidity (RH) from two weather stations (Gilgit and Skardu) of upper Indus basin region from 1953 to 2006. To observe the trends of climate change, the selected time was divided into two temporal half periods consisting of 27 years each (1953-1979 and 1980-2006). The overall mean temperature (OMT) was decreased by - 0.137 °C in Gilgit, while an increase of 0.63 °C was observed in Skardu during the later period compared to the previous one. The mean minimum temperature (MMT) was found to decrease while mean maximum temperature (MXT) showed non-significant changes during the summer at both locations. However, there was an evidence of spring and winter warming at both locations due to increase in the MXT. The precipitation data showed large interannual variation at both locations. Significant increases in the morning relative humidity (RH) were observed during summer and autumn months at Skardu and throughout the year at Gilgit, while the evening RH increased during the same seasons at both stations. Significant increase in MXT and OMT during spring and winter months at higher elevation (Skardu) may have serious implications for the deposition and melting of seasonal snowpack with impacts on local livelihoods and river flow.
Assuntos
Mudança Climática , Monitoramento Ambiental , Paquistão , Rios , Estações do Ano , Temperatura , Abastecimento de ÁguaRESUMO
BACKGROUND: Dysregulation of hedgehog pathway is observed in numerous cancers. Relevance of hedgehog pathway genes in cancer cohort and inhibition of its downstream effector (GLI1) towards metastasis in cell lines are explored in the study. METHOD: One hundred fifty fresh tumours of breast cancer patients were collected for the study. Based on differential expression, panel of 6 key regulators of the pathway (SHH, DHH, IHH, PTCH1, SMO and GLI1) in microarray datasets were identified. Expressional profiles of aforementioned genes were later correlated with clinico-pathological parameters in Pakistani breast cancer cohort at transcript and protein levels. In addition, GLI1 over expressing breast cancer cell lines (MDA-MB-231 and MCF-7) were treated with GANT61 to explore its probable effects on metastasis. RESULT: SHH, DHH, PTCH1 and GLI1 were significantly over-expressed in tumours as compared with respective normal mammary tissues. A significant correlation of SHH, DHH and GLI1 expression with advanced tumour size, stages, grades, nodal involvement and distant metastasis was observed (p < 0.05). Over-expression of SHH, DHH and GLI1 was significantly related with patients having early onset and pre-menopausal status. Of note, hedgehog pathway was frequently up regulated in luminal B and triple negative breast cancer affected women. In addition, positive correlations were observed among aforementioned members of pathway and Ki67 (r-value: 0.63-0.78) emphasizing their role towards disease progression. Exposure of GANT61 (inhibitor for GLI1) significantly restricted cell proliferation, reduced cell motility and invasion. CONCLUSION: Role of activated hedgehog pathway in breast cancer metastasis provides a novel target for cancer therapy against aggressive cancer subtypes.
Assuntos
Proteínas Hedgehog/metabolismo , Transdução de Sinais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Receptor Patched-1/metabolismo , Modelos de Riscos Proporcionais , Piridinas/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína GLI1 em Dedos de Zinco/metabolismoRESUMO
Formation of complexes between soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) proteins on opposing membranes is the minimal requirement for intracellular membrane fusion. The SNARE, syntaxin 2, is found on the sperm plasma membrane and a second SNARE, vesicle associated membrane protein 2 (VAMP2, also known as synaptobrevin 2, SYB2), is on the apposing outer acrosomal membrane. During the acrosome reaction, the outer acrosomal membrane fuses at hundreds of points with the plasma membrane. We hypothesized that syntaxin 2 and VAMP2 redistribute within their respective membranes prior to the acrosome reaction to form trans-SNARE complexes and promote membrane fusion. Immunofluorescence and superresolution structured illumination microscopy were used to localize syntaxin 2 and VAMP2 in mouse sperm during capacitation. Initially, syntaxin 2 was found in puncta throughout the acrosomal region. At 60 and 120 min of capacitation, syntaxin 2 was localized in puncta primarily in the apical ridge. Although deletion of bicarbonate during incubation had no effect, syntaxin 2 puncta were relocated in the restricted region in less than 20% of sperm incubated without albumin. In contrast, VAMP2 was already found in puncta within the apical ridge prior to capacitation. The puncta containing syntaxin 2 and VAMP2 did not precisely co-localize at 0 or 60 min of capacitation time. In summary, syntaxin 2 shifted its location to the apical ridge on the plasma membrane during capacitation in an albumin-dependent manner but VAMP2 was already localized to the apical ridge. Puncta containing VAMP2 did not co-localize with those containing syntaxin 2 during capacitation; therefore, formation of trans-SNARE complexes containing these SNAREs does not occur until after capacitation, immediately prior to acrosomal exocytosis.
Assuntos
Reação Acrossômica/fisiologia , Membrana Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Proteínas SNARE/metabolismo , Espermatozoides/fisiologia , Animais , Bicarbonatos , Masculino , Camundongos , Transporte Proteico , Proteínas SNARE/genética , Soroalbumina Bovina , Sintaxina 1/metabolismoRESUMO
Endosulfan is an organochlorine pesticide that is toxic to aquatic life. Endosulfan might hamper the reproductive health of indigenous fish in agricultural areas of Pakistan where this pesticide is sprayed widely. The aim of the current study is to investigate the toxic effects of endosulfan on selected reproductive parameters of male freshwater fish, Cyprinion watsoni. Two concentrations of endosulfan (0.5 and 1 ppb for 30 days exposure) were tested for their effects on body weight, body length, and testicular weight, length, and width. Testicular testosterone was assayed from tissue extracts using enzyme immunoassay (EIA). A significant increase in the mortality rate was observed in both treated groups during both spawning and quiescent seasons. The overall behavior of fish in the aquarium was normal in all control and treated groups. However, the treated fish exhibited anxiety after treatment with endosulfan. The body weight and length, and testicular weight, length and width were not significantly different to the control group. The testicular testosterone concentrations were significantly lower in both endosulfan-treated groups compared to the control. The decrease was dose-dependent, with a significant difference between the two treated groups. The histomorphological results demonstrated various testicular alterations in the treated groups. These alterations included an increase in interlobular areas and clumping patterns in spermatocytes/spermatids. Because spermatids eventually differentiate into sperms, their low count will directly result in lower sperm count. Taken together, these results suggest that endosulfan is a toxicant that at least disturbs testosterone levels (possibly others) and negatively impacts the reproductive health of male freshwater fish.
Assuntos
Endossulfano/toxicidade , Peixes/fisiologia , Reprodução/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Masculino , Contagem de Espermatozoides , Espermátides/efeitos dos fármacos , Testosterona/análise , Poluentes Químicos da Água/toxicidadeRESUMO
Aims of this study were to provide firsthand data on the incidence of trace metals in human seminal plasma and find possible correlations between levels of toxic metals and semen quality of Pakistani population. Human semen samples were collected from male partners of couples undergoing infertility assessment at the National Institute of Health Islamabad (Pakistan). We investigated seventy-five seminal plasma samples, which were further categorized into three groups (normozoospermia, oligozoospermia and azoospermia) according to WHO guidelines. The concentration of 17 different toxic metals in human seminal plasma was determined simultaneously by using Inductively coupled plasma mass spectrometry (ICP-MS). Out of 17 trace metals, Cd and Ni showed significant difference (p < 0.05) among three monitored groups. Ni and Cd concentrations in the seminal plasma were negatively correlated with sperm concentration (r = -0.26, -0.29) and motility (r = -0.33, -0.37), respectively. This study suggested that exposure of Ni and Cd is mainly related with the consumption of contaminated dietary items, including ghee (cooking oil), flour and other agri-products. In some semen samples, the concentrations of Sn, V, Cu, Pb, Cr and Hg exhibited high levels suggesting a recent human exposure to surrounding sources. In Pakistani human semen samples, the levels of trace metals were lower and/or comparable to that found in populations of other countries. The results show the first evidence of the effect of toxic metals on semen quality and male infertility in Pakistan.
Assuntos
Infertilidade Masculina/epidemiologia , Metais Pesados/análise , Análise do Sêmen , Sêmen/química , Oligoelementos/análise , Cádmio/análise , Humanos , Masculino , Níquel/análise , Paquistão/epidemiologiaRESUMO
The prolonged hypoxic conditions hinder chronic wounds from healing and lead to severe conditions such as delayed re-epithelialization and enhanced risk of infection. Multifunctional wound dressings are highly required to address the challenges of chronic wounds. Herein, we report polyurethane-coated sodium per carbonate-loaded chitosan hydrogel (CSPUO2 ) as a multifunctional dressing. The hydrogels (Control, CSPU, and CSPUO2 ) were prepared by freeze gelation method and the developed hydrogels showed high porosity, good absorption capacity, and adequate biodegradability. The release of oxygen from the CSPUO2 hydrogel was confirmed by the increase in pH and a sustained oxygen release was observed over the period of 21 days, due to polyurethane (CSPU) coating. The CSPUO2 hydrogel exhibited around 2-fold increased angiogenic potential in CAM assay when compared with Control and CSPU dressing. CSPUO2 also showed good level of antibacterial efficacy against E. coli and S. aureus. In a full-thickness rat wound model, CSPUO2 hydrogel considerably accelerated wound healing with exceptional re-epithelialization granulation tissue formation less inflammatory cells and improved skin architecture highlighting the tremendous therapeutic potential of this hydrogel when compared with control and CSPU to treat chronic diabetic and burn wounds.
Assuntos
Quitosana , Ratos , Animais , Quitosana/farmacologia , Hidrogéis/farmacologia , Oxigênio/farmacologia , Escherichia coli , Staphylococcus aureus , Angiogênese , Poliuretanos , Cicatrização , Carbonatos , Antibacterianos/farmacologiaRESUMO
Individuals working in diverse fields are consistently exposed to work-related pollutants that can impact their overall health. The current study investigated the presence of pollutants in seven different occupational groups and their impact on human health. Biochemical and genetic approaches were employed. Heavy metals were determined by ICP-MS technique. Oxidative stress biochemical markers and molecular analysis of the glutathione transferases gene SNPs (GSTT1, GSTM1, GSTP1), catalase (CAT, rs7943316), and superoxide dismutase (SOD, rs17880487) was carried out. The results revealed a significantly higher quantity of Cd among five occupational groups. Catalase, malonaldehyde, and glutathione was significantly dysregulated. Molecular analysis of the gene SNPs suggests a probable relationship between the antioxidants and the phenotypic expression of the CAT, GSTP1, GSTT1, and GSTM1 SNPs. It is concluded that chronic exposure to occupational contaminants like Cd affects human health through oxidative stress in association with some of their gene SNPs.
Assuntos
Catalase , Glutationa S-Transferase pi , Glutationa Transferase , Metais Pesados , Exposição Ocupacional , Estresse Oxidativo , Polimorfismo de Nucleotídeo Único , Superóxido Dismutase , Humanos , Glutationa Transferase/genética , Catalase/genética , Glutationa S-Transferase pi/genética , Metais Pesados/toxicidade , Superóxido Dismutase/genética , Adulto , Masculino , Antioxidantes/metabolismo , Malondialdeído , Glutationa/metabolismoRESUMO
Persistent Organic Pollutants (POPs) such as dichlorodimethyltrichloroethane (DDT) are present and ubiquitous in the environment due to their resilient nature. DDT is a prevalent endocrine disruptor still found in detectable amounts in organisms and the environment even after its use was banned in the 1970s. Medline and Google Scholar were systematically searched to detect all relevant animal and human studies published in the last 20 years (January 2003 to February 2023) in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. In total, 38 studies were included for qualitative synthesis. This systematic search and review indicated that exposure to DDT is associated with female reproductive health issues, such as reduced fecundability; increased risk of preterm/premature deliveries; increased periods of gestation; alterations in the synthesis of crucial reproductive hormones (Progesterone and Oxytocin) through ion imbalances and changes in prostaglandin synthesis, myometrial and stromal hypertrophy, and edema; and variations in uterine contractions through increased uterine wet weight. There was also limited evidence indicating DDT as a carcinogen sufficient to instigate reproductive cancers. However, this review only takes into account the in vitro studies that have established a possible pathway to understand how DDT impacts female infertility and leads to reproductive cancers. Links between the pathways described in various studies have been developed in this review to produce a summarized picture of how one event might lead to another. Additionally, epidemiological studies that specifically targeted the exposure to DDT of females belonging to various ethnicities have been reviewed to develop an overall picture of prevailing female reproductive health concerns in different nations.
RESUMO
Male infertility is a complex and polygenic reproductive disease. 10-15% of the males are affected by idiopathic infertility conditions. Acetylcholine (ACh), a major neurotransmitter has been reported to play a non-neuronal role as well. Acetylcholinesterase (AChE) is the primary ACh hydrolyzing enzyme whose over or lower expression influence the availability of ACh for physiological roles. The purpose of the study was to find the possible impact and association of acetylcholinesterase, ACHE gene variant rs 17228602, and pro-inflammatory cytokines in clinically diagnosed infertile males. The study includes clinically diagnosed fifty non-infertile (control) and forty-five infertile males. Whole blood AChE enzymatic activity was measured. Genotyping of rs17228602 was carried out from peripheral blood by standard molecular methods. Pro-inflammatory cytokines were determined by the ELISA method. AChE enzyme was found to be significantly elevated in infertile than non-infertile males. ACHE SNP rs17228602 had shown significant association in dominant model (odd ratio = 0.378, 95% CI = 0.157-0.911, p-value 0.046). Pro-inflammatory cytokine IL-1ß was notably increased with statistical significance (p ≤0.05) in male infertile patients. The study concludes and speculates that AChE plays role in the pathogenesis of male infertility through the modulation of inflammatory pathways. Further studies in this direction may resolve the idiopathic cases of male infertility. Other variants of ACHE and the association of miRNA for the regulation of AChE in male infertility are suggested for further insight.
Assuntos
Acetilcolinesterase , Infertilidade Masculina , Humanos , Masculino , Acetilcolina , Acetilcolinesterase/genética , Citocinas/genética , Infertilidade Masculina/genéticaRESUMO
Tamoxifen is the drug of choice as hormonal therapy for hormone receptor-positive breast cancers and can reduce the risk of breast cancer recurrence. However, oral tamoxifen has a low bioavailability due to liver and intestinal metabolic passes. To overcome this problem and utilize the potential of this drug to its maximum, inorganic nanoparticle carriers have been exploited and tested to increase its bioavailability. Biocompatibility and unique magnetic properties make iron oxide nanoparticles an excellent choice as a drug delivery system. In this study, we developed and tested a "green synthesis" approach to synthesize iron nanoparticles from green tea extract and coated them with agar for longer stability (AG-INPs). Later, these hybrid nanoparticles were conjugated with tamoxifen (TMX). By using this approach, we synthesized stable agar-coated tamoxifen-conjugated iron nanoparticles (TMX-AG-INPs) and characterized them with Fourier-transform infrared (FTIR) spectroscopy. The average particle size of AG-INPs was 26.8 nm, while the average particle size of tamoxifen-loaded iron nanoparticles, TMX-AG-INPs, was 32.1 nm, as measured by transmission and scanning electron microscopy. The entrapment efficiency of TMX-AG-INPs obtained by the drug release profile was 88%, with a drug loading capacity of 43.5%. TMX-AG-INPs were significantly (p < 0.001) efficient in killing breast cancer cells when tested in vitro on the established breast cancer cell line MCF-7 by cell viability assay, indicating their potential to control cell proliferation.
RESUMO
Avian pathogenic E. coli (APEC) is associated with local and systemic infections in poultry, ducks, turkeys, and many other avian species, leading to heavy economical losses. These APEC strains are presumed to possess zoonotic potential due to common virulence markers that can cause urinary tract infections in humans. The prophylactic use of antibiotics in the poultry sector has led to the rapid emergence of Multiple Drug Resistant (MDR) APEC strains that act as reservoirs and put human populations at risk. This calls for consideration of alternative strategies to decrease the bacterial load. Here, we report isolation, preliminary characterization, and genome analysis of two novel lytic phage species (Escherichia phage SKA49 and Escherichia phage SKA64) against MDR strain of APEC, QZJM25. Both phages were able to keep QZJM25 growth significantly less than the untreated bacterial control for approximately 18 h. The host range was tested against Escherichia coli strains of poultry and human UTI infections. SKA49 had a broader host range in contrast to SKA64. Both phages were stable at 37 °C only. Their genome analysis indicated their safety as no recombination, integration and host virulence genes were identified. Both these phages can be good candidates for control of APEC strains based on their lysis potential.
Assuntos
Bacteriófagos , Infecções por Escherichia coli , Doenças das Aves Domésticas , Animais , Humanos , Escherichia coli/genética , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Bacteriófagos/genética , Aves/microbiologia , Aves Domésticas , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/microbiologia , GalinhasRESUMO
Recent experimental studies sparked the involvement of autophagy-related 7 (ATG7) in the development of atherosclerosis. However, the genetic variants and their association with coronary artery disease (CAD) are still to be unveiled. Therefore, we aimed to design a retrospective case-control study for the analysis of ATG7 gene polymorphisms and their association with CAD among the subjects originating from Pakistan. The ATG7 noncoding polymorphisms (rs1375206; Chr3:11297643 C/G and rs550744886; Chr3:11272004 C/G) were examined in 600 subjects, including 300 individuals diagnosed with CAD. Arginase-1 (ARG1) and nitric oxide metabolites were measured by the colorimetric enzymatic assay. Genotyping of noncoding ATG7 polymorphisms was accomplished by the polymerase chain reaction-restriction fragment length polymorphism method. A significant association of ATG7 (rs1375206 and rs550744886) was observed in individuals exhibiting CAD (P < .0001, for each single-nucleotide polymorphism). Moreover, variant allele G at both loci showed high occurrence and significant association with the disease phenotype as compared to the wild-type allele (odds ratio [OR] = 2.03, P < .0001 and OR = 2.08, P < .001, respectively). Variant genotypes at ATG7 rs1375206 and rs550744886 showed significant association with high concentrations of ARG1 and low nitric oxide metabolites among the patients (P < .0001 for each). A significant difference was noted in the distribution of the haplotype G-G, mapped at Chr3:11297643-11272004 between cases and controls (P < .0001). The study concludes that ATG7 polymorphisms are among the risk factors for CAD in the subjects from Pakistan. The study thus highlights the novel risk factors for high incidents of the disease and reported for the first time to the best of our knowledge.
Assuntos
Proteína 7 Relacionada à Autofagia , Doença da Artéria Coronariana , Polimorfismo de Nucleotídeo Único , Autofagia , Proteína 7 Relacionada à Autofagia/genética , Estudos de Casos e Controles , Doença da Artéria Coronariana/genética , Humanos , Óxido Nítrico , Estudos RetrospectivosRESUMO
This research on a thyroxine/heparin-based cotton wound dressing tests angiogenic and wound healing ability of thyroxine/heparin in a chick chorionic allantoic membrane bioassay and in skin wounds in healthy rats. Commercially available cotton dressings were simply loaded with thyroxine/heparin solutions and coated with wax. Prior to undertaking the animal study, we assessed in vitro release of thyroxine/heparin from coated and uncoated cotton dressings. Both showed more than 85% release of drug over 14 days, though the lesser release was observed in wax-coated thyroxine/heparin dressing as compared to uncoated thyroxine/heparin dressing. Testing of angiogenesis through CAM assay proved good angiogenic potential of heparin and thyroxin, but the thyroxine found more angiogenic than heparin. In animal study, full-thickness skin wounds of 20 mm diameter showed good healing in both heparin and thyroxine-treated groups. But the most striking result was seen in the thyroxine-treated group where thyroxine showed significant difference with heparin-treated group and completely healed the wounds in 23 days. Thus, the study suggest that thyroxine possesses greater angiogenic and wound healing potential than heparin, and the use of thyroxine/heparin-loaded wax-coated cotton dressing could be a cost-effective option for the management of chronic wounds.
Assuntos
Heparina , Tiroxina , Animais , Bandagens , Heparina/farmacologia , Ratos , Tiroxina/farmacologia , CicatrizaçãoRESUMO
Salmonella enterica serovar Typhimurium is a foodborne pathogen causing occasional outbreaks of enteric infections in humans. Salmonella has one of the largest pools of temperate phages in its genome that possess evolutionary significance for pathogen. In this study, we characterized a novel temperate phage Salmonella phage BIS20 (BIS20) with unique tail fiber genes. It belongs to the subfamily Peduovirinae genus Eganvirus and infects Salmonella Typhimurium strain (SE-BS17; Acc. NO MZ503545) of poultry origin. Phage BIS20 was viable only at biological pH and temperature ranges (pH7 and 37 °C). Despite being temperate BIS20 significantly slowed down the growth of host strain for 24 h as compared to control (P < 0.009). Phage BIS20 features 29,477-base pair (bp) linear DNA genome with 53% GC content and encodes for 37 putative ORFs. These ORFs have mosaic arrangement as indicated by its ORF similarity to various phages and prophages in NCBI. Genome analysis indicates its similarity to Salmonella enterica serovar Senftenberg prophage (SEStP) sequence (Nucleotide similarity 87.7%) and Escherichia virus 186 (~ 82.4% nucleotide similarity). Capsid genes were conserved however those associated with tail fiber formation and assembly were unique to all members of genus Eganvirus. We found strong evidence of recombination hotspot in tail fiber gene. Our study identifies BIS20 as a new species of genus Eganvirus temperate phages as its maximum nucleotide similarity is 82.4% with any phage in NCBI. Our findings may contribute to understanding of origin of new temperate phages.
Assuntos
Bacteriófagos , Fagos de Salmonella , Bacteriófagos/genética , Genoma Viral , Humanos , Myoviridae/genética , Nucleotídeos , Prófagos/genética , Salmonella , Fagos de Salmonella/genética , Salmonella typhimurium/genéticaRESUMO
Fusarium verticillioides is an important fungal pathogen of maize, causing stalk rot and severely affecting crop production. The aim of this study was to characterize the protective effects of formulations based on Jacaranda mimosifolia leaf extracts against F. verticillioides in maize. We compared different seed treatments comprising J. mimosifolia extracts, chemical fungicide (mefenoxam) and salicylic acid to modulate the defense system of maize host plants. Both aqueous and methanolic leaf extracts of J. mimosifolia (1.2% w/v) resulted in 96-97% inhibition of mycelial growth of F. verticillioides. While a full-dose (1.2%) extract of J. mimosifolia provided significant protective effects on maize plants compared to the inoculated control, a half-dose (0.6% w/v) application of J. mimosifolia in combination with half-strength mefenoxam was the most effective treatment in reducing stalk rot disease in pot and field experiments. The same seed treatment significantly upregulated the expression of genes in the leaves encoding chitinase, glucanase, lipid transfer protein, and pathogenesis-related proteins PR-1, PR-5 and PR-10, 72 h after inoculation. This treatment also induced the activities of peroxidase, polyphenol oxidase, protease, acid invertase, chitinase and phenylalanine ammonia lyase. We conclude that seed pre-treatment with J. mimosifolia extract with half-strength chemical mefenoxam is a promising approach for the management of stalk rot in maize.