Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Plants (Basel) ; 13(20)2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39458822

RESUMO

Excessive use of chemical fertilizers poses significant environmental and health concerns. Microbial-based biofertilizers are increasingly being promoted as safe alternatives. However, they have limitations such as gaining farmers' trust, the need for technical expertise, and the variable performance of microbes in the field. The development of nanobiofertilizers as agro-stimulants and agro-protective agents for climate-smart and sustainable agriculture could overcome these limitations. In the present study, auxin-producing Enterococcus sp. SR9, based on its plant growth-promoting traits, was selected for the microbe-assisted synthesis of silver nanoparticles (AgNPs). These microbial-nanoparticles SR9AgNPs were characterized using UV/Vis spectrophotometry, scanning electron microscopy, and a size analyzer. To test the efficacy of SR9AgNPs compared to treatment with the SR9 isolate alone, the germination rates of cucumber (Cucumis sativus), tomato (Solanum lycopersicum), and wheat (Triticum aestivum L.) seeds were analyzed. The data revealed that seeds simultaneously treated with SR9AgNPs and SR9 showed better germination rates than untreated control plants. In the case of vigor, wheat showed the most positive response to the nanoparticle treatment, with a higher vigor index than the other crops analyzed. The toxicity assessment of SR9AgNPs demonstrated no apparent toxicity at a concentration of 100 ppm, resulting in the highest germination and biomass gain in wheat seedlings. This work represents the first step in the characterization of microbial-assisted SR9AgNPs and encourages future studies to extend these conclusions to other relevant crops under field conditions.

2.
Dose Response ; 21(3): 15593258231187357, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37435595

RESUMO

Medicinal plants have been extensively exploited for their immense pharmacological and immune-supporting potential. Fruit of Citrullus colocynthis has several active secondary metabolites such as phenolics, flavonoids, and essential oils that are used in traditional medicines as antidiabetic, anti-inflammatory, antioxidant, and antimicrobial agents. In this study, phytoconstituents in organic fractions (n-hexane, chloroform, and ethyl acetate) of the methanolic extract of C. colocynthis were analyzed and identified by FT-IR, HPLC, and GC-MS analysis. Ethyl acetate fraction showed the highest antioxidant scavenging (76 ± .769%) and anti-inflammatory (40 ± .473%) activities at the concentration of 3 mg/mL. Similarly, antidiabetic effect was measured by inhibition of α-amylase where, ethyl acetate fraction (77 ± .844%) exhibited the highest antidiabetic activity. Among all organic fractions, ethyl acetate exhibited strong antimicrobial potential followed by n-hexane and chloroform fractions against selected pathogenic bacteria. Various concentrations of the ethyl acetate extract were tested in-vivo for cytotoxicity and results indicated minor morphological changes in liver cells including ballooning, fatty droplets, and slight accumulation of extracellular matrix even at concentrations of 400 mg/kg. In-silico study showed that stigmasta-7,16-dien-3-ol had a strong interaction with COX-1 and COX-2 to reduce inflammation. The abovementioned results indicate the pharmacological strengths of C. colocynthis to fight several diseases.

3.
3 Biotech ; 13(6): 182, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37193329

RESUMO

The recent advances in omics and computational analysis have enabled the capacity to identify the exclusive strain-specific metabolites and novel biosynthetic gene clusters. This study analyzed eight strains of P. aurantiaca including GS1, GS3, GS4, GS6, GS7, FS2, ARS38, PBSt2, one strain of P. chlororaphis RP4, one strain of P. aeruginosa (At1RP4), and one strain of P. fluorescens (RS1) for the production of rhamnolipids, quorum-sensing signals, and osmolytes. Seven rhamnolipid derivatives were variably detected in fluorescent pseudomonads. These rhamnolipids included Rha-C10-C8, Rha-Rha-C10-C10, Rha-C10-C12db, Rha-C10-C10, Rha-Rha-C10-C12, Rha-C10-C12, and Rha-Rha-C10-C12db. Pseudomonas spp. also showed the variable production of osmoprotectants including N-acetyl glutaminyl glutamine amide (NAGGN), betaine, ectoine, and trehalose. Betaine and ectoine were produced by all pseudomonads, however, NAGGN and trehalose were observed by five and three strains, respectively. Four strains including P. chlororaphis (RP4), P. aeruginosa (At1RP4), P. fluorescens (RS1), and P. aurantiaca (PBSt2) were exposed to 1- 4% NaCl concentrations and evaluated for the changes in phenazine production profile which were negligible. AntiSMASH 5.0 platform showed 50 biosynthetic gene clusters in PB-St2, of which 23 (45%) were classified as putative gene clusters with ClusterFinder algorithm, five (10%) were classified as non-ribosomal peptides synthetases (NRPS), five (10%) as saccharides, and four (8%) were classified as putative fatty acids. The genomic attributes and comprehensive insights into the metabolomic profile of these Pseudomonas spp. strains showcase their phytostimulatory, phyto-protective, and osmoprotective effects of diverse crops grown in normal and saline soils. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03607-x.

4.
Anticancer Agents Med Chem ; 23(12): 1388-1396, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37005537

RESUMO

BACKGROUND: Breast cancer is characterized by uncontrolled cell growth in the breast tissue and is a leading cause of death globally. Cytotoxic effects and reduced efficacy of currently used therapeutics insist to look for new chemo-preventive strategies against breast cancer. LKB1 gene has recently been categorized as a tumor suppressor gene where its inactivation can cause sporadic carcinomas in various tissues. Mutations in the highly conserved LKB1 catalytic domain lead to the loss of function and subsequently elevated expression of pluripotency factors in breast cancer. OBJECTIVE: The utilization of drug-likeness filters and molecular simulation has helped evaluate the pharmacological activity and binding abilities of selected drug candidates to the target proteins in many cancer studies. METHODS: The current in silico study provides a pharmacoinformatic approach to decipher the potential of novel honokiol derivatives as therapeutic agents against breast cancer. AutoDock Vina was used for molecular docking of the molecules. A 100 nano second (ns) molecular dynamics simulation of the lowest energy posture of 3'-formylhonokiol- LKB1, resulting from docking studies, was carried out using the AMBER 18. RESULTS: Among the three honokiol derivatives, ligand-protein binding energy of 3' formylhonokiol with LKB1 protein was found to be the highest via molecular docking. Moreover, the stability and compactness inferred for 3'- formylhonokiol with LKB1 are suggestive of 3' formylhonokiol being an effective activator of LKB1 via simulation studies. CONCLUSION: It was further established that 3'- formylhonokiol displays an excellent profile of distribution, metabolism, and absorption, indicating it is an anticipated future drug candidate.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Simulação de Acoplamento Molecular , Proteínas Serina-Treonina Quinases/metabolismo , Compostos de Bifenilo/farmacologia , Simulação de Dinâmica Molecular
5.
Med Oncol ; 39(12): 198, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071299

RESUMO

Cancer has become the silent killer in less-developed countries and the most significant cause of morbidity worldwide. The accessible and frequently used treatments include surgery, radiotherapy, chemotherapy, and immunotherapy. Chemotherapeutic drugs traditionally involve using plant-based medications either in the form of isolated compounds or as scaffolds for synthetic drugs. To launch a drug in the market, it has to pass through several intricate steps. The multidrug resistance in cancers calls for novel drug discovery and development. Every year anticancer potential of several plant-based compounds and extracts is reported but only a few advances to clinical trials. The false-positive or negative results impact the progress of the cell-based anticancer assays. There are several cell-based assays but the widely used include MTT, MTS, and XTT. In this article, we have discussed various pitfalls and workable solutions.


Assuntos
Colorimetria , Neoplasias , Artefatos , Desenvolvimento de Medicamentos , Descoberta de Drogas , Humanos , Neoplasias/tratamento farmacológico
6.
3 Biotech ; 11(2): 48, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33489669

RESUMO

In this study, nine strains of Pseudomonas au rantiaca and P. chlororaphis, and two isolates of Pseudomonas sp.: At1RP4 and RS-1, were characterized for the in-vitro production of secondary metabolites in LB, DMB, and King's B media, and of the genes responsible for the production of antagonistic metabolites. Based on 16S rRNA gene sequence, isolates At1RP4 and RS-1 were identified as strains of P. aeruginosa and P. fluorescens. Five phenazine derivatives comprising phenazine, phenazine-1-carboxylic acid (PCA), 2-hydroxyphenazine-1-carboxylic acid (2-OH-Phz-1-COOH), phenazine-1,6-dicarboxylic acid (Phz-1,6-di-COOH), and 2-hydroxyphenazine (2-OH-Phz) were produced by all strains in all three culture media including DMB, King's B and LB. However, 2,8-dihydroxyphenazine, 6-methylphenazine-1-carboxylic acid, pyrrolnitrin, and the ortho-dialkyl-aromatic acids, were produced by the P. aurantiaca and P. chlororaphis strains. In addition, all strains produced 2-acetamidophenol, pyochelin, and diketopiperazine derivatives in variable amounts in all three culture media used. Highest levels of quorum-sensing signal molecules including PQS, 2-Octyl-3-hydroxy-4(1H)-quinolone, and hexahydro-quinoxaline-1,4-dioxide were recorded for P. aeruginosa At1RP4. Moreover, all strains produced volatile hydrogen cyanide (0.95-6.68 µg/L) and the phytohormone indole-3-acetic acid (0.42-13.9 µM). Production of extracellular lipase and protease was recorded in all pseudomonads, whereas, cellulase production and phosphate solubilization were variable. Genes for hydrogen cyanide and phenazine-1-carboxylic acid were detected in all eleven strains while the gene for pyrrolnitrin biosynthesis was amplified in P. aurantiaca and P. chlororaphis strains. Comparative metabolomic analysis provided detailed insights about the strain-specific metabolites in pseudomonads, and their pseudo-relative quantification in different bacterial growth media to be used as single-strain biofertilizer and biocontrol inoculums. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-020-02585-8.

8.
Bio Protoc ; 8(2): e2702, 2018 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34179247

RESUMO

Increased antibiotic resistance of plants and human pathogens and continuous use of chemical fertilizers has pushed microbiologists to explore new microbial sources as potential antagonists. In this study, eight strains of Pseudomonas aurantiaca and Pseudomonas chlororaphis, have been isolated from different plant sources and screened for their antagonistic and plant growth promoting potential ( Shahid et al., 2017 ). All strains were compared with reference strain PB-St2 and their secondary metabolites were isolated by the use of solvent partitioning and subjected to LC/ESI/MS for confirmation of compounds. The ESI-mass spectra obtained were used to characterize the surfactants ionization behavior and [M + H]+ and [M + Na]+ ions were monitored for phenazines, derivatives of lahorenoic acid and cyclic lipopeptide (WLIP). LC-MS and HPLC methods were developed to see the elution of dominant metabolites in a single run to avoid the labor and separate methods of detection for all compounds. The method was found suitable and distinctively separated the compounds at different retention times in gradient flow. This method can be helpful to explore the metabolome of Pseudomonas sp. overall and in identification and quantification of strain specific metabolites.

9.
Microbiol Res ; 205: 107-117, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28942836

RESUMO

Biofertilizers are usually carrier-based inoculants containing beneficial microorganisms. Incorporation of microorganisms in carrier material enables easy-handling, long-term storage and high effectiveness of biofertilizers. Objective of the present study was to assess enriched biogas sludge and soil as biofertilizer carriers on growth and yield of wheat. Six phosphate solubilizing strains were used in this study. Three phosphate solubilizing strains, 77-NS2 (Bacillus endophyticus), 77-CS-S1 (Bacillus sphaericus) and 77-NS5 (Enterobacter aerogenes) were isolated from the rhizosphere of sugarcane, two strains, PSB5 (Bacillus safensis) and PSB12 (Bacillus megaterium) from the rhizosphere of wheat and one halophilic phosphate solubilizing strain AT2RP3 (Virgibacillus sp.) from the rhizosphere of Atriplex amnicola, were used as bioinoculants. Phosphate solubilization ability of these strains was checked in vitro in Pikovskaya medium, containing rock phosphate (RP) as insoluble P source, individually supplemented with three different carbon sources, i.e., glucose, sucrose and maltose. Maximum phosphate solubilization; 305.6µg/ml, 217.2µg/ml and 148.1µg/ml was observed in Bacillus strain PSB12 in Pikovskaya medium containing sucrose, maltose and glucose respectively. A field experiment and pot experiments in climate control room were conducted to study the effects of biogas sludge and enriched soil based phosphorous biofertilizers on growth of wheat. Bacillus strain PSB12 significantly increased root and shoot dry weights and lengths using biogas sludge as carrier material in climate control room experiments. While in field conditions, significant increase in root and shoot dry weights, lengths and seed weights was seen by PSB12 and PSB5 (Bacillus) and Enterobacter strain 77-NS5 using biogas sludge as carrier. PSB12 also significantly increased both root and shoot dry weights and lengths in field conditions when used as enriched soil based inoculum. These results indicated that bacterial isolates having plant beneficial traits such as P solubilization are more promising candidates as biofertilizer when used with carrier materials.


Assuntos
Bacillus/metabolismo , Enterobacter/metabolismo , Fertilizantes , Fosfatos/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/microbiologia , Atriplex/microbiologia , Bacillus/classificação , Bacillus/isolamento & purificação , Biocombustíveis , Enterobacter/classificação , Enterobacter/isolamento & purificação , Ácidos Indolacéticos/metabolismo , Fósforo/metabolismo , Filogenia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Rizosfera , Saccharum , Sementes/crescimento & desenvolvimento , Esgotos/microbiologia , Solo/química , Microbiologia do Solo , Solubilidade
10.
Front Microbiol ; 8: 2593, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312265

RESUMO

Zinc is an imperative micronutrient required for optimum plant growth. Zinc solubilizing bacteria are potential alternatives for zinc supplementation and convert applied inorganic zinc to available forms. This study was conducted to screen zinc solubilizing rhizobacteria isolated from wheat and sugarcane, and to analyze their effect on wheat growth and development. Fourteen exo-polysaccharides producing bacterial isolates of wheat were identified and characterized biochemically as well as on the basis of 16S rRNA gene sequences. Along these, 10 identified sugarcane isolates were also screened for zinc solubilizing ability on five different insoluble zinc sources. Out of 24, five strains, i.e., EPS 1 (Pseudomonas fragi), EPS 6 (Pantoea dispersa), EPS 13 (Pantoea agglomerans), PBS 2 (E. cloacae) and LHRW1 (Rhizobium sp.) were selected (based on their zinc solubilizing and PGP activities) for pot scale plant experiments. ZnCO3 was used as zinc source and wheat seedlings were inoculated with these five strains, individually, to assess their effect on plant growth and development. The effect on plants was analyzed based on growth parameters and quantifying zinc content of shoot, root and grains using atomic absorption spectroscopy. Plant experiment was performed in two sets. For first set of plant experiments (harvested after 1 month), maximum shoot and root dry weights and shoot lengths were noted for the plants inoculated with Rhizobium sp. (LHRW1) while E. cloacae (PBS 2) increased both shoot and root lengths. Highest zinc content was found in shoots of E. cloacae (PBS 2) and in roots of P. agglomerans (EPS 13) followed by zinc supplemented control. For second set of plant experiment, when plants were harvested after three months, Pantoea dispersa (EPS 6), P. agglomerans (EPS 13) and E. cloacae (PBS 2) significantly increased shoot dry weights. However, significant increase in root dry weights and maximum zinc content was recorded for Pseudomonas fragi (EPS 1) inoculated plants, isolated from wheat rhizosphere. While maximum zinc content for roots was quantified in the control plants indicating the plant's inability to transport zinc to grains, supporting accelerated bioavailability of zinc to plant grains with zinc solubilizing rhizobacteria.

11.
J Microbiol Biotechnol ; 27(3): 480-491, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-27974729

RESUMO

Fluorescent pseudomonads have been isolated from halophytes, mesophytes, and xerophytes of Pakistan. Among these, eight isolates, GS-1, GS-3, GS-4, GS-6, GS-7, FS-2 (cactus), ARS-38 (cotton), and RP-4 (para grass), showed antifungal activity and were selected for detailed study. Based on biochemical tests and 16S rRNA gene sequences, these were identified as strains of P. chlororaphis subsp. chlororaphis and aurantiaca. Secondary metabolites of these strains were analyzed by LC-MS. Phenazine-1-carboxylic acid (PCA), 2-hydroxy-phenazine, Cyclic Lipopeptide (white line-inducing principle (WLIP)), and lahorenoic acid A were detected in variable amounts in these strains. P. aurantiaca PB-St2 was used as a reference as it is known for the production of these compounds. The phzO and PCA genes were amplified to assure that production of these compounds is not an artifact. Indole acetic acid production was confirmed and quantified by HPLC. HCN and siderophore production by all strains was observed by plate assays. These strains did not solubilize phosphate, but five strains were positive for zinc solubilization. Wheat seedlings were inoculated with these strains to observe their effect on plant growth. P. aurantiaca strains PB-St2 and GS-6 and P. chlororaphis RP-4 significantly increased both root and shoot dry weights, as compared with uninoculated plants. However, P. aurantiaca strains FS-2 and ARS-38 significantly increased root and shoot dry weights, respectively. All strains except PB-St2 and ARS-38 significantly increased the root length. This is the first report of the isolation of P. aurantiaca from cotton and cactus, P. chlororaphis from para grass, WLIP and lahorenoic acid A production by P. chlororaphis, and zinc solubilization by P. chlororaphis and P. aurantiaca.


Assuntos
Cactaceae/crescimento & desenvolvimento , Cactaceae/microbiologia , Gossypium/crescimento & desenvolvimento , Gossypium/microbiologia , Poaceae/crescimento & desenvolvimento , Poaceae/microbiologia , Pseudomonas chlororaphis/metabolismo , Pseudomonas/metabolismo , Metabolismo Secundário , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Cromatografia Líquida , Espectrometria de Massas , Metaboloma , Metabolômica/métodos , Testes de Sensibilidade Microbiana , Pseudomonas/classificação , Pseudomonas/genética , Pseudomonas/isolamento & purificação , Pseudomonas chlororaphis/classificação , Pseudomonas chlororaphis/genética , Pseudomonas chlororaphis/isolamento & purificação , RNA Ribossômico 16S/genética , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
12.
Protein Pept Lett ; 21(12): 1282-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24939659

RESUMO

Enzymes from thermophilic organisms are believed to be strong candidates for industrial applications due to their ability to withstand temperature-induced enzyme inactivation. The present study demonstrated molecular cloning, over-expression, purification and characterization of ß-glucosidase from Thermotoga maritima. The bglA gene with a capacity to encode a 51 kDa enzyme was heterologously expressed in E. coli M15. The enzyme was produced @130 mgL(-1) in LB media and @440 mgL(-1) in Dubos salt medium accounting 40-47 % of total cellular soluble proteins when lactose was used as an inducer. The enzyme showed a peak activity between pH and temperature range of 5.0-7.0 and 80-100 °C, respectively. The activity was fairly stable up to 140 °C. The turnover rate (kcat) of the enzyme was 187.1±20 s(-1), whereas the Km and Vmax values were 0.56 mM and 238±2.4 IU mg(-1) protein, respectively. The enzyme was shown to have half-life of 136, 71 and 12.6 h at 80, 90 and 100 °C, respectively. Thermodynamics parameters including melting temperature (130 °C), activation energy for inactivation (36.92 kJmole(-1)), enthalpy (33.73 kJmole(-1)), Gibb's free energy (127.96 kJmole(-1)) and entropy (-246.46 Jmole(-1)K(-1)) have shown that the enzyme have enhanced hydrophobic interactions to prevent its thermal unfolding. These features endorse the industrial applications of the enzyme.


Assuntos
Proteínas de Bactérias/química , Thermotoga maritima/enzimologia , beta-Glucosidase/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Cinética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica , Thermotoga maritima/genética , beta-Glucosidase/genética , beta-Glucosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA