Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 22(7): 224-234, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34159721

RESUMO

The study investigated the dosimetric impact of an iterative metal artifact reduction (iMAR) tool on carbon ion therapy for pelvic cancer patients with hip prostheses. An anthropomorphic pelvic phantom with unilateral and bilateral hip prostheses was used to simulate pelvic cancer patients with metal implants. The raw data obtained from phantom CT scanning were reconstructed with a regular filtered back projection (FBP) algorithm and then corrected with iMAR. The phantom without hip prosthesis was also scanned and used as a reference ground truth (GT). The CT images of three prostate and four sarcoma patients with unilateral hip prosthesis were also reconstructed by FBP and iMAR algorithm and compared. iMAR algorithm reduced the metal artifacts and the maximum WEPL deviation in phantom images from -19.1 to -0.4 mm. However, the CT numbers cannot be retrieved using iMAR for periprosthetic bone materials, eventually leading to a WEPL deviation of -3.6 mm. The use of iMAR improved large discrepancies in DVHs of PTVs and the gamma index between FBP and GT images but increased the difference in the bladder DVH for bilateral hip prostheses due to newly introduced artifacts. In the patient study, the discrepancies of dose distribution were small on iMAR images when compared with FBP images for most cases, except for two sarcoma cases where gamma analysis failed and dose coverage in 98% of the PTV maximally reduced due to large volume of dark metal artifacts. iMAR reduced the metal artifacts and improved dose distribution accuracy in carbon ion radiotherapy for pelvic cancer. However, the residual and newly introduced artifacts, especially with bilateral hip prostheses, may potentially increase WEPL inaccuracy and dose uncertainty. The use of iMAR has the potential to improve carbon ion treatment planning of pelvic cancer but should be used with caution.


Assuntos
Radioterapia com Íons Pesados , Prótese de Quadril , Algoritmos , Artefatos , Humanos , Masculino , Imagens de Fantasmas , Radiometria
2.
Int J Radiat Biol ; 96(11): 1435-1442, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32816596

RESUMO

PURPOSE: To develop a Monte Carlo (MC) beam model for raster scanning proton beams for dose verification purposes. METHODS AND MATERIALS: MC program FLUKA was used in the model. The nominal energy, momentum spread and beam angular distribution in the model were determined by matching the simulation profiles with the measured integral depth dose (IDD) and in air spot size. Dosimetric comparison was done by comparing the measured and simulated dose distributions. The 1 D dose profile of cubic Spread Out Bragg Peak (SOBP) plans, and the 2 D dose distribution of previously treated breast cancer patients' clinical plans were measured by using Pinpoint chambers and 2 D array ionization chambers, respectively. Corresponding DICOM plan information was utilized for MC simulation. RESULTS: The MC results showed good agreement with measurements for the SOBP plans. The absolute comparison of the absorbed dose difference between the MC and the measurement was 0.93%±0.88%. For the patient plans, the overall passing rate of the gamma index analysis (γ-PR) between the MC simulation and measurement with the 2%-2 mm criteria was 97.78%, and only 1 case had a γ-PR less than 90%. With the 3%-3 mm criteria, γ-PR was never below 99% for all cases with and without the range shifter. CONCLUSIONS: This work described a method for adapting a MC simulation model for a raster scanning proton beam. The good concordance between the simulations and measurements shows that the MC model is an accurate and reliable method. It has the potential to be used for patient specific quality assurance (PSQA) to reduce the beam time for the measurements in water.


Assuntos
Método de Monte Carlo , Terapia com Prótons , Calibragem , Radiometria , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA