RESUMO
Polymer brushes have been widely used to functionalize surfaces and provide antifouling capabilities against proteins and cells. Many efforts have focused on methods for functionalization of antifouling polymer brush surfaces for interactions with specific cells, proteins, and bacteria, but none have focused on immobilizing nanoparticles (NPs) on these surfaces. This article demonstrates that both pristine NPs and protein-coated NPs can adsorb onto well-functioning antifouling polymer brush coatings formed from poly-l-lysine-graft-poly(ethylene glycol) (PLL-g-PEG) and methoxy PEG-thiol. The role of ionic strength in solution, substrate surface material, and NP surface charge in the interaction was investigated to explore the forces behind the interaction. The adsorption of different types of NPs onto the surface was studied, determining that polystyrene, gold, carbon black, and silica particles can adsorb onto PLL-g-PEG. We show that the approach can be applied in, and studied by, both surface plasmon resonance and fluorescence imaging and suggest its application as a means to study NP-protein interactions, such as the protein corona. NPs self-assembled at antifouling polymer brush surfaces provide a novel platform for both scientific studies and applications in biotechnology.
RESUMO
Nanoscale biomolecular placement is crucial for advancing cellular signaling, sensor technology, and molecular interaction studies. Despite this, current methods fall short in enabling large-area nanopatterning of multiple biomolecules while minimizing nonspecific interactions. Using bioorthogonal tags at a submicron scale, we introduce a novel hole-mask colloidal lithography method for arranging up to three distinct proteins, DNA, or peptides on large, fully passivated surfaces. The surfaces are compatible with single-molecule fluorescence microscopy and microplate formats, facilitating versatile applications in cellular and single-molecule assays. We utilize fully passivated and transparent substrates devoid of metals and nanotopographical features to ensure accurate patterning and minimize nonspecific interactions. Surface patterning is achieved using bioorthogonal TCO-tetrazine (inverse electron-demand Diels-Alder, IEDDA) ligation, DBCO-azide (strain-promoted azide-alkyne cycloaddition, SPAAC) click chemistry, and biotin-avidin interactions. These are arranged on surfaces passivated with dense poly(ethylene glycol) PEG brushes crafted through the selective and stepwise removal of sacrificial metallic and polymeric layers, enabling the directed attachment of biospecific tags with nanometric precision. In a proof-of-concept experiment, DNA tension gauge tether (TGT) force sensors, conjugated to cRGD (arginylglycylaspartic acid) in nanoclusters, measured fibroblast integrin tension. This novel application enables the quantification of forces in the piconewton range, which is restricted within the nanopatterned clusters. A second demonstration of the platform to study integrin and epidermal growth factor (EGF) proximal signaling reveals clear mechanotransduction and changes in the cellular morphology. The findings illustrate the platform's potential as a powerful tool for probing complex biochemical pathways involving several molecules arranged with nanometer precision and cellular interactions at the nanoscale.
Assuntos
Química Click , DNA , DNA/química , Técnicas Biossensoriais/métodos , Propriedades de Superfície , Animais , Camundongos , Azidas/química , Biotina/química , Nanoestruturas/química , Polietilenoglicóis/química , Ligantes , Avidina/químicaRESUMO
Serial intravital 2-photon microscopy of the kidney and other abdominal organs is a powerful technique to assess tissue function and structure simultaneously and over time. Thus, serial intravital microscopy can capture dynamic tissue changes during health and disease and holds great potential to characterize (patho-) physiological processes with subcellular resolution. However, successful image acquisition and analysis require significant expertise and impose multiple potential challenges. Abdominal organs are rhythmically displaced by breathing movements which hamper high-resolution imaging. Traditionally, kidney intravital imaging is performed on inverted microscopes where breathing movements are partly compensated by the weight of the animal pressing down. Here, we present a custom and easy-to-implement setup for intravital imaging of the kidney and other abdominal organs on upright microscopes. Furthermore, we provide image processing protocols and a new plugin for the free image analysis software FIJI to process multichannel fluorescence microscopy data. The proposed image processing pipelines cover multiple image denoising algorithms, sample drift correction using 2D registration, and alignment of serial imaging data collected over several weeks using landmark-based 3D registration. The provided tools aim to lower the barrier of entry to intravital microscopy of the kidney and are readily applicable by biomedical practitioners.
RESUMO
Hemidesmosomes (HDs) are multiprotein complexes that firmly anchor epidermal cells to the basement membrane of skin through the interconnection of the cytoplasmic intermediate filaments with extracellular laminin 332 (Ln332). Considerably less attention has been paid to HDs compared to focal complexes/focal adhesions (FC/FAs) in mechanistic single-cell structures due to the lack of suitable in vitro model systems. Here nanopatterns of Ln332 (100-1000 nm) are created to direct and study the formation of HD in adherent HaCaT cells. It is observed that HaCaT cells at Ln 332 nanopatterns adhere via hemidesmosomes, in stark contrast to cells at homogeneous Ln332 surfaces that adhere via FC/FAs. Clustering of α6 integrin is observed at nanopatterned Ln332 of 300 nm patches and larger. Cells at 500 nm diameter patterns show strong colocalization of α6 integrin with ColXVII or pan-cytokeratin compared to 300 nm/1000 nm indicating a threshold for HD initiation >100 nm but a pattern size selection for maturation of HDs. It is demonstrated that the pattern of Ln332 can determine the cellular selection of adhesion types with a size-dependent initiation and maturation of HDs. The protein nanopatterning approach that is presented provides a new in vitro route to study the role of HDs in cell signaling and function.