Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nature ; 577(7792): 647-651, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31988511

RESUMO

Most bulk-scale graphene is produced by a top-down approach, exfoliating graphite, which often requires large amounts of solvent with high-energy mixing, shearing, sonication or electrochemical treatment1-3. Although chemical oxidation of graphite to graphene oxide promotes exfoliation, it requires harsh oxidants and leaves the graphene with a defective perforated structure after the subsequent reduction step3,4. Bottom-up synthesis of high-quality graphene is often restricted to ultrasmall amounts if performed by chemical vapour deposition or advanced synthetic organic methods, or it provides a defect-ridden structure if carried out in bulk solution4-6. Here we show that flash Joule heating of inexpensive carbon sources-such as coal, petroleum coke, biochar, carbon black, discarded food, rubber tyres and mixed plastic waste-can afford gram-scale quantities of graphene in less than one second. The product, named flash graphene (FG) after the process used to produce it, shows turbostratic arrangement (that is, little order) between the stacked graphene layers. FG synthesis uses no furnace and no solvents or reactive gases. Yields depend on the carbon content of the source; when using a high-carbon source, such as carbon black, anthracitic coal or calcined coke, yields can range from 80 to 90 per cent with carbon purity greater than 99 per cent. No purification steps are necessary. Raman spectroscopy analysis shows a low-intensity or absent D band for FG, indicating that FG has among the lowest defect concentrations reported so far for graphene, and confirms the turbostratic stacking of FG, which is clearly distinguished from turbostratic graphite. The disordered orientation of FG layers facilitates its rapid exfoliation upon mixing during composite formation. The electric energy cost for FG synthesis is only about 7.2 kilojoules per gram, which could render FG suitable for use in bulk composites of plastic, metals, plywood, concrete and other building materials.

2.
Langmuir ; 37(18): 5699-5706, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33900778

RESUMO

Blending TiO2 and cement to create photocatalytic composites holds promise for low-cost, durable water treatment. However, the efficiency of such composites hinges on cross-effects of several parameters such as cement composition, type of photocatalyst, and microstructure, which are poorly understood and require extensive combinatorial tests to discern. Here, we report a new combinatorial data science approach to understand the influence of various photocatalytic cement composites based on limited datasets. Using P25 nanoparticles and submicron-sized anatase as representative TiO2 photocatalysts and methyl orange and 1,4-dioxane as target organic pollutants, we demonstrate that the cement composition is a more influential factor on photocatalytic activity than the cement microstructure and TiO2 type and particle size. Among the various cement constituents, belite and ferrite had strong inverse correlation with photocatalytic activity, while natural rutile had a positive correlation, which suggests optimization opportunities by manipulating the cement composition. These results were discerned by screening 7806 combinatorial functions that capture cross-effects of multiple compositional phases and obtaining correlation scores. We also report •OH radical generation, cement aging effects, TiO2 leaching, and strategies to regenerate photocatalytic surfaces for reuse. This work provides several nonintuitive correlations and insights on the effect of cement composition and structure on performance, thus advancing our knowledge on development of scalable photocatalytic materials for drinking water treatment in rural and resource-limited areas.

3.
Phys Chem Chem Phys ; 23(10): 5999-6008, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33666607

RESUMO

Decoding behavioral aspects associated with the water molecules in confined spaces such as an interlayer space of two-dimensional nanosheets is key for the fundamental understanding of water-matter interactions and identifying unexpected phenomena of water molecules in chemistry and physics. Although numerous studies have been conducted on the behavior of water molecules in confined spaces, their reach stops at the properties of the planar ice-like formation, where van der Waals interactions are the predominant interactions and many questions on the confined space such as the possibility of electron exchange and excitation state remain unsettled. We used density functional theory and reactive molecular dynamics to reveal orbital overlap and induction bonding between water molecules and graphene sheets under much less pressure than graphene fractures. Our study demonstrates high amounts of charge being transferred between water and the graphene sheets, as the interlayer space becomes smaller. As a result, the inner face of the graphene nanosheets is functionalized with hydroxyl and epoxy functional groups while released hydrogen in the form of protons either stays still or traverses a short distance inside the confined space via the Grotthuss mechanism. We found signatures of a new hydrolysis mechanism in the water molecules, i.e. mechanical hydrolysis, presumably responsible for relieving water from extremely confined conditions. This phenomenon where water reacts under extreme confinement by disintegration rather than forming ice-like structures is observed for the first time, illustrating the prospect of treating ultrafine porous nanostructures as a driver for water splitting and material functionalization, potentially impacting the modern design of nanofilters, nanochannels, nano-capacitators, sensors, and so on.

4.
Phys Chem Chem Phys ; 22(10): 5959-5968, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32123885

RESUMO

Double perovskite-based silver and bismuth Cs2AgBiX6 (X = Cl, Br, I) have shown a bright future for the development of low-risk photovoltaic devices due to their high stability and non-toxicity of their elements, unlike Pb-based perovskites. Despite the great focus on the optoelectronic properties of Cs2AgBiX6 double perovskites, there are limited studies on the behavior of their structural properties. Herein, we carefully examined the cubic structure of Cs2AgBiX6 double perovskites, identifying a pseudo-cubic (ps-cubic) phase, which is similar to the initial cubic phase. The observed pseudo-cubic phase is more consistent with previous experimental results demonstrating higher elastic properties, which are useful for designing optoelectronic devices.

5.
Small ; 15(19): e1900656, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30968576

RESUMO

Structure-property maps play a key role in accelerated materials discovery. The current norm for developing these maps includes computationally expensive physics-based simulations. Here, the capabilities of deep learning agents are explored such as convolutional neural networks (CNNs) and multilayer perceptrons (MLPs) to predict structure-property relations and reduce dependence on simulations. This study contains simulated hexagonal boron nitride (h-BN) microstructures damaged by various levels of radiation and temperature, with the objective to predict their residual strengths from the final atomic positions. By developing low dimensional physical descriptors to statistically describe the defects, these results show that purpose-specific microstructure representation can help in achieving a good prediction accuracy at low computational cost. Furthermore, the adaptability of the trained deep learning agents is explored to predict structure-property maps of other 2D materials using transfer learning. It is shown that in order to achieve good predictions accuracy (≈95% R2 ), an agent that is training for the first time ("learning from scratch") requires 23-45% of simulated data, whereas an agent adapting to a different material ("transfer learning") requires only about 10% or less. This suggests that transfer learning is a potential game changer in material discovery and characterization approaches.


Assuntos
Compostos de Boro/química , Aprendizado Profundo , Grafite/química , Microscopia Eletrônica de Varredura , Relação Estrutura-Atividade
6.
Small ; 14(15): e1702863, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29516631

RESUMO

Hydrogen is an ideal synthetic fuel because it is lightweight, abundant and its oxidation product (water) is environmentally benign. However, its utilization is impeded by the lack of an efficient storage device. A new building block approach is proposed for an exhaustive search of optimal hydrogen uptakes in a series of low density boron nitride (BN) nanoarchitectures via extensive 3868 ab initio-based multiscale simulations. By probing various geometries, temperatures, pressures, and doping ratios, these results demonstrate a maximum uptake of 8.65 wt% at 300 K, the highest hydrogen uptake on sorbents at room temperature without doping. Li+ doping of the nanoarchitectures offers a set of optimal combinations of gravimetric and volumetric uptakes, surpassing the US Department of Energy targets. These findings suggest that the merger of energetic affinity and optimal geometry in BN building blocks overcomes the intrinsic limitations of sorbent materials, putting hybrid BN nanoarchitectures on equal footing with hydrides while demonstrating a superior capacity-kinetics-thermodynamics relationship.

7.
Langmuir ; 34(40): 12154-12166, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30252480

RESUMO

Calcium silicate (CS)-based materials are ubiquitous in diverse industries ranging from cementitious materials to bone tissue engineering and drug delivery. As a symbolic example, concrete is the most widely used synthetic material on the planet. This large consumption entails significant negative environmental footprint, which calls for innovative strategies to develop greener concrete with improved properties (to do more with less). Herein, we focus on the physicochemical properties of novel spherical calcium silicate particles with an extremely narrow size distribution and report their promising potential as fundamental building blocks. We demonstrate a scalable size- and shape-controlled synthesis protocol to yield highly spherical CS submicron particles, leading to favorable aggregation mechanisms and thus self-assembly of the bulk ensemble. This optimized kinetics-controlled synthesis is governed by suitable stoichiometric ratio of calcium over silicon, type and concentration of the surfactant, and molar ratio of the alkaline solution. Our extensive nano/micro/macro-characterization results show that the bulk ensemble exhibits many superior properties, such as improved strength, toughness, ductility, and durability, paving the path for bottom-up science-based engineering of concrete.

8.
Langmuir ; 34(37): 11176-11187, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30139254

RESUMO

Water confined to nanopores such as carbon nanotubes (CNTs) exhibits different states, enabling the study of solidlike water nanotubes (WNTs) and the potential application of their properties due to confined effects. Herein, we report the interfacial interaction and particular stabilized boundaries of confined WNTs within CNTs and boron nitride nanotubes (BNNTs) using first-principles calculations. We demonstrate that the intermolecular potential of nanotube walls exerts diameter-dependent additive or subtractive van der Waals (vdW) pressure on the WNTs, altering the phase boundaries. Our results reveal that the most stable WNT@CNT is associated with a CNT diameter of 10.5 Å. By correlating the stability of WNTs with interfacial properties such as the vdW pressure and vibrational phonon modes of confined WNTs, we decode and compare various synergies in water interaction and stabilized states within the CNTs and BNNTs, including interfacial properties of WNT@BNNTs that are more significant than those of WNT@CNTs. Our results suggest that the transition of a water tube to an ice tube is strongly dependent on the diameter of the confining CNT or BNNT, providing new insights on leveraging the interfacial interaction mechanism of confined WNTs and their potential application for fabricating nanochannels and nanocapacitors.


Assuntos
Compostos de Boro/química , Nanotubos de Carbono/química , Água/química , Modelos Químicos , Teoria Quântica
9.
J Am Ceram Soc ; 100(7): 2746-2773, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28966345

RESUMO

In a book published in 1906, Richard Meade outlined the history of portland cement up to that point1. Since then there has been great progress in portland cement-based construction materials technologies brought about by advances in the materials science of composites and the development of chemical additives (admixtures) for applications. The resulting functionalities, together with its economy and the sheer abundance of its raw materials, have elevated ordinary portland cement (OPC) concrete to the status of most used synthetic material on Earth. While the 20th century was characterized by the emergence of computer technology, computational science and engineering, and instrumental analysis, the fundamental composition of portland cement has remained surprisingly constant. And, although our understanding of ordinary portland cement (OPC) chemistry has grown tremendously, the intermediate steps in hydration and the nature of calcium silicate hydrate (C-S-H), the major product of OPC hydration, remain clouded in uncertainty. Nonetheless, the century also witnessed great advances in the materials technology of cement despite the uncertain understanding of its most fundamental components. Unfortunately, OPC also has a tremendous consumption-based environmental impact, and concrete made from OPC has a poor strength-to-weight ratio. If these challenges are not addressed, the dominance of OPC could wane over the next 100 years. With this in mind, this paper envisions what the 21st century holds in store for OPC in terms of the driving forces that will shape our continued use of this material. Will a new material replace OPC, and concrete as we know it today, as the preeminent infrastructure construction material?

10.
Langmuir ; 32(50): 13313-13321, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27771958

RESUMO

Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capacities. Density functional theory and molecular dynamics simulations show that these lithium- and oxygen-doped pillared structures have improved gravimetric and volumetric hydrogen capacities at room temperature, with values on the order of 9.1-11.6 wt % and 40-60 g/L. Our findings demonstrate that the gravimetric uptake of oxygen- and lithium-doped PBN and PGBN has significantly enhanced the hydrogen sorption and desorption. Calculations for O-doped PGBN yield gravimetric hydrogen uptake capacities greater than 11.6 wt % at room temperature. This increased value is attributed to the pillared morphology, which improves the mechanical properties and increases porosity, as well as the high binding energy between oxygen and GBN. Our results suggest that hybrid carbon/BNNT nanostructures are an excellent candidate for hydrogen storage, owing to the combination of the electron mobility of graphene and the polarized nature of BN at heterojunctions, which enhances the uptake capacity, providing ample opportunities to further tune this hybrid material for efficient hydrogen storage.

11.
Langmuir ; 29(25): 8154-63, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23713817

RESUMO

The geometry and material property mismatch across the interface of hybrid materials with dissimilar building blocks make it extremely difficult to fully understand the lateral chemical bonding processes and design nanocomposites with optimal performance. Here, we report a combined first-principles study, molecular dynamics modeling, and theoretical derivations to unravel the detailed mechanisms of H-bonding, deformation, load transfer, and failure at the interface of polyvinyl alcohol (PVA) and silicates, as an example of hybrid materials with geometry and property mismatch across the interface. We identify contributing H-bonds that are key to adhesion and demonstrate a specific periodic pattern of interfacial H-bond network dictated by the interface mismatch and intramolecular H-bonding. We find that the maximum toughness, incorporating both intra- and interlayer strain energy contributions, govern the existence of optimum overlap length and thus the rupture of interfacial (interlayer) H-bond assemblies in natural and synthetic hybrid materials. This universally valid result is in contrast to the previous reports that correlate shear strength with rupture of H-bonds assemblies at a finite overlap length. Overall, this work establishes a unified understanding to explain the interplay between geometric constraints, interfacial H-bonding, materials characteristics, and optimal mechanical properties in hybrid organic-inorganic materials.


Assuntos
Nanocompostos/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Álcool de Polivinil/química , Resistência à Tração
12.
Proc Natl Acad Sci U S A ; 106(38): 16102-7, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19805265

RESUMO

Despite decades of studies of calcium-silicate-hydrate (C-S-H), the structurally complex binder phase of concrete, the interplay between chemical composition and density remains essentially unexplored. Together these characteristics of C-S-H define and modulate the physical and mechanical properties of this "liquid stone" gel phase. With the recent determination of the calcium/silicon (C/S = 1.7) ratio and the density of the C-S-H particle (2.6 g/cm(3)) by neutron scattering measurements, there is new urgency to the challenge of explaining these essential properties. Here we propose a molecular model of C-S-H based on a bottom-up atomistic simulation approach that considers only the chemical specificity of the system as the overriding constraint. By allowing for short silica chains distributed as monomers, dimers, and pentamers, this C-S-H archetype of a molecular description of interacting CaO, SiO2, and H2O units provides not only realistic values of the C/S ratio and the density computed by grand canonical Monte Carlo simulation of water adsorption at 300 K. The model, with a chemical composition of (CaO)(1.65)(SiO2)(H2O)(1.75), also predicts other essential structural features and fundamental physical properties amenable to experimental validation, which suggest that the C-S-H gel structure includes both glass-like short-range order and crystalline features of the mineral tobermorite. Additionally, we probe the mechanical stiffness, strength, and hydrolytic shear response of our molecular model, as compared to experimentally measured properties of C-S-H. The latter results illustrate the prospect of treating cement on equal footing with metals and ceramics in the current application of mechanism-based models and multiscale simulations to study inelastic deformation and cracking.


Assuntos
Compostos de Cálcio/química , Modelos Moleculares , Óxidos/química , Dióxido de Silício/química , Água/química , Adsorção , Algoritmos , Simulação por Computador , Elasticidade , Microscopia Eletrônica de Transmissão , Método de Monte Carlo , Tamanho da Partícula , Reprodutibilidade dos Testes , Termodinâmica , Difração de Raios X
13.
Phys Chem Chem Phys ; 13(3): 1002-11, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21069228

RESUMO

The use of empirical force fields is now a standard approach in predicting the properties of hydrated oxides which are omnipresent in both natural and engineering applications. Transferability of force fields to analogous hydrated oxides without rigorous investigations may result in misleading property predictions. Herein, we focus on two common empirical force fields, the simple point charge ClayFF potential and the core-shell potential to study tobermorite minerals, the most prominent family of Calcium-Silicate-Hydrates that are complex hydrated oxides. We benchmark the predictive capabilities of these force fields against first principles results. While the structural information seem to be in close agreement with DFT results, we find that for higher order properties such as elastic constants, the core-shell potential quantitatively improves upon the simple point charge model, and shows a larger degree of transferability to complex materials. In return, to remedy the deficiencies of the simple point charge potential for hydrated calcio-silicates, we suggest using both structural data and elasticity data for potential calibration, a new force field potential, CSH-FF. This re-parameterized version of ClayFF is then applied to simulating an atomistic model of cement (Pellenq et al., PNAS, 2009). We demonstrate that this force field improves the predictive capabilities of ClayFF, being considerably less computational intensive than the core-shell model.

14.
Sci Rep ; 11(1): 15111, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301976

RESUMO

Interfacial encoded properties of polymer adlayers adsorbed on the graphene (GE) and silicon dioxide (SiO2) have been constituted a scaffold for the creation of new materials. The holistic understanding of nanoscale intermolecular interaction of 1D/2D polymer assemblies on substrate is the key to bottom-up design of molecular devices. We develop an integrated multidisciplinary approach based on electronic structure computation [density functional theory (DFT)] and big data mining [machine learning (ML)] in parallel with neural network (NN) and statistical analysis (SA) to design hybrid polymers from assembly on substrate. Here we demonstrate that interfacial pressure and structural deformation of polymer network adsorbed on GE and SiO2 offer unique directions for the fabrication of 1D/2D polymers using only a small number of simple molecular building blocks. Our findings serve as the platform for designing a wide range of typical inorganic heterostructures, involving noncovalent intermolecular interaction observed in many nanoscale electronic devices.

15.
ACS Nano ; 14(8): 9466-9477, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32491835

RESUMO

3D printing of cementitious materials holds a great promise for construction due to its rapid, consistent, modular, and geometry-controlled ability. However, its major drawback is low cohesion in the interlayer region. Herein, we report a combined experimental and computational approach to understand and control fabrication of 3D-printed cementitious materials with significantly enhanced interlayer strength using multimaterial 3D printing, in which the composition, function, and structure of the materials are programmed. Our results show that the intrinsic low interlayer cohesion is caused by excess moisture and time lag that block the majority of valuable interactions in the interlayer zone between the adjacent cement matrices. As a remedy, a thin epoxy layer is introduced as an intermediator between the adjacent extruded layers, both to improve the interlayer cohesion and to extend the possible time delay between printed adjacent layers. Our ab initio calculations demonstrate that an orbital overlap between the calcium ions, as the main electrophilic part of the cement structure, and the hydroxyl groups, as the nucleophilic part of the epoxy, create strong interfacial absorption sites. These electronic absorptions lead to several iono-covalent bonds between the cement matrix and epoxy, leading to significant improvements in tensile, shear, and compressive strengths as well as ductility of the 3D-printed composites. This is verified by our experimental data, which showed an average of 84% improvement in interlayer bonding. The upward augmentation of interlayer bonding helps 3D printing cementitious material to overcome their intrinsic limitation of weak interlayer cohesion, thereby mitigating/eliminating the key bottleneck of additive manufacturing in constructing materials.

16.
Nanomaterials (Basel) ; 10(3)2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-32121427

RESUMO

Two-dimensional hexagonal boron nitride (hBN) is an insulator with polar covalent B-N bonds. Monolayer and bilayer pentagonal BN emerge as an optoelectronic material, which can be used in photo-based devices such as photodetectors and photocatalysis. Herein, we implement spin polarized electron density calculations to extract electronic/optical properties of mono- and bilayer pentagonal BN structures, labeled as B 2 N 4 , B 3 N 3 , and B 4 N 2 . Unlike the insulating hBN, the pentagonal BN exhibits metallic or semiconducting behavior, depending on the detailed pentagonal structures. The origin of the metallicity is attributed to the delocalized boron (B) 2p electrons, which has been verified by electron localized function and electronic band structure as well as density of states. Interestingly, all 3D networks of different bilayer pentagonal BN are dynamically stable unlike 2D structures, whose monolayer B 4 N 2 is unstable. These 3D materials retain their metallic and semiconductor nature. Our findings of the optical properties indicate that pentagonal BN has a visible absorption peak that is suitable for photovoltaic application. Metallic behavior of pentagonal BN has a particular potential for thin-film based devices and nanomaterial engineering.

17.
ACS Nano ; 14(11): 15595-15604, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33119255

RESUMO

In this work, an approach to upcycling plastic waste (PW) products is presented. The method relies on flash Joule heating (FJH) to convert PW into flash graphene (FG). In addition to FG, the process results in the formation of carbon oligomers, hydrogen, and light hydrocarbons. In order to make high-quality graphene, a sequential alternating current (AC) and direct current (DC) flash is used. The FJH process requires no catalyst and works for PW mixtures, which makes the process suitable for handling landfill PW. The energy required to convert PW to FG is ∼23 kJ/g or ∼$125 in electricity per ton of PW, potentially making this process economically attractive for scale-up. The FG was characterized by Raman spectroscopy and had an I2D/IG peak ratio up to 6 with a low-intensity D band. Moreover, transmission electron microscopy and X-ray diffraction analysis show that the FG is turbostratic with an interlayer spacing of 3.45 Å. The large interlayer spacing will facilitate its dispersion in liquids and composites. Analysis of FG dispersions in 1% Pluronic aqueous solution shows that concentrations up to 1.2 mg/mL can be achieved. The carbon oligomers that distilled from the process were characterized by Fourier transform infrared spectroscopy and have chemical structures similar to the starting PW. Initial analysis of gas-phase products shows the formation of considerable amounts of hydrogen along with other light hydrocarbons. As graphene is naturally occurring and shows a low toxicity profile, this could be an environmentally beneficial method to upcycle PW.

18.
RSC Adv ; 9(11): 5901-5907, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35517256

RESUMO

Water interaction and transport through nanochannels of two-dimensional (2D) nanomaterials hold great promises in several applications including separation, energy harvesting and drug delivery. However, the fundamental underpinning of the electronic phenomena at the interface of such systems is poorly understood. Inspired by recent experiments, herein, we focus on water/heavy water in boron nitride (BN) nanochannels - as a model system - and report a series of ab initio based density functional theory (DFT) calculations on correlating the stability of adsorption and interfacial properties, decoding various synergies in the complex interfacial interactions of water encapsulated in BN nanocapillaries. We provide a comparison of phonon vibrational modes of water and heavy water (D2O) captured in bilayer BN (BLBN) to compare their mobility and group speed as a key factor for separation mechanisms. This finding, combined with the fundamental insights into the nature of the interfacial properties, provides key hypotheses for the design of nanochannels.

19.
ACS Appl Mater Interfaces ; 11(8): 8635-8644, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30719919

RESUMO

Ternary two-dimensional (2D) materials such as fused graphene-boron nitride (GBN) nanosheets exhibit attractive physical and tunable properties far beyond their parent structures. Although these features impart several multifunctional properties in various matrices, a fundamental understanding on the nature of the interfacial interactions of these ternary 2D materials with host matrices and the role of their individual components has been elusive. Herein, we focus on intercalated GBN/ceramic composites as a model system and perform a series of density functional theory calculations to fill this knowledge gap. Propelled by more polarity and negative Gibbs free energy, our results demonstrate that GBN is more water-soluble than graphene and hexagonal boron nitride (h-BN), making it a preferred choice for slurry preparation and resultant intercalations. Further, a chief attribute of the intercalated GBN/ceramic is the formation of covalent C-O and B-O bonds between the two structures, changing the hybridization of GBN from sp2 to sp3. This change, combined with the electron release in the vicinity of the interfacial regions, leads to several nonintuitive mechanical and electrical alterations of the composite such as exhibiting higher young's modulus, strength, and ductility as well as sharp decline in the band gap. As a limiting case, though both tobermorite ceramic and h-BN are wide band gap materials, their intercalated composite becomes a p-type semiconductor, contrary to intuition. These multifunctional features, along with our fundamental electronic descriptions of the origin of property change, provide key guidelines for synthesizing next generation of multifunctional bilayer ceramics with remarkable properties on demand.

20.
ACS Appl Mater Interfaces ; 10(3): 2203-2209, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29308874

RESUMO

By performing an extensive 150+ first-principles calculations, this work demonstrates how the exotic properties of emerging 2D hBN nanosheets (e.g., ultrahigh surface area, high mechanical and thermal tolerance) can be coupled strategically (via exfoliation and geometrical compatibility) with the lamellar nanostructure of calcium-silicate crystals to introduce "reinforcement" at the basal plane of materials, i.e., the smallest possible scale. Probing mechanical properties show significant enhancement in strength, toughest, stiffness and strain, providing key guidelines to intercalate a suite of emerging 2D materials in ceramics for the bottom-up design and fabrication of ultrahigh performance and multifunctional ceramic composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA