Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Funct Mater ; 32(50)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36589903

RESUMO

Superparamagnetic iron oxide (SPIO)-labeling of cells has been applied for magnetic resonance imaging (MRI) cell tracking for over 30 years, having resulted in a dozen or so clinical trials. SPIO nanoparticles are biodegradable and can be broken down into elemental iron, and hence the tolerance of cells to magnetic labeling has been overall high. Over the years, however, single reports have accumulated demonstrating that the proliferation, migration, adhesion and differentiation of magnetically labeled cells may differ from unlabeled cells, with inhibition of chondrocytic differentiation of labeled human mesenchymal stem cells (hMSCs) as a notable example. This historical perspective provides an overview of some of the drawbacks that can be encountered with magnetic labeling. Now that magnetic particle imaging (MPI) cell tracking is emerging as a new in vivo cellular imaging modality, there has been a renaissance in the formulation of SPIO nanoparticles this time optimized for MPI. Lessons learned from the occasional past pitfalls encountered with SPIO-labeling of cells for MRI may expedite possible future clinical translation of (combined) MRI/MPI cell tracking.

2.
Lasers Med Sci ; 37(1): 335-343, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33523392

RESUMO

Nanotechnology-based photothermal therapy (NPTT) is a new emerging modality of cancer therapy. To have the right prediction and early detection of response to NPTT, it is necessary to get rapid feedback from a tumor treated by NPTT procedure and stay informed of what happens in the tumor site. We performed this study to find if proton magnetic resonance spectroscopy (1H-MRS) can be well responsive to such an imperative requirement. We considered various treatment groups including gold nanoparticles (AuNPs), laser, and the combination of AuNPs and laser (NPTT group). Therapeutic effects on CT26 colon tumor-bearing BALB/c mice were studied by looking at alterations that happened in 1H-MRS signals and tumor size after conducting treatment procedures. In MRS studies, the alterations of choline and lipid concentrations and their ratio were investigated. Having normalized the metabolite peak to water peak, we found a significant decrease in choline concentration post-NPTT (from (1.25 ± 0.05) × 10-3 to (0.43 ± 0.04) × 10-3), while the level of lipid concentration in the tumor was slightly increased (from (2.91 ± 0.23) × 10-3 to (3.52 ± 0.31) × 10-3). As a result, the choline/lipid ratio was significantly decreased post-NPTT (from 0.41 ± 0.11 to 0.11 ± 0.02). Such alterations appeared just 1 day after NPTT. Tumor shrinkage in all groups was studied and significant changes were significantly detectable on day 7 post-NPTT procedure. In conclusion, the study of choline/lipid ratio using 1H-MRS may help us estimate what happens in a tumor treated by the NPTT method. Such an in vivo assessment is interestingly feasible as soon as just 1 day post-NPTT. This would undoubtedly help the oncologists make a more precise decision about treatment planning strategies. Monitoring of the choline/lipid ratio by 1H-MRS can be helpful for prediction and early detection of response to nano-photo-thermal therapy.


Assuntos
Nanopartículas Metálicas , Neoplasias , Animais , Colina , Ouro , Lipídeos , Camundongos , Espectroscopia de Prótons por Ressonância Magnética
3.
Med J Islam Repub Iran ; 34: 86, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33306064

RESUMO

Background: Use of hair samples to analyze the trace element concentrations is one of the interesting fields among many researchers. X-ray fluorescence (XRF) is considered as one of the most common methods in studying the concentration of elements in tissues and also crystalline materials, using low energy X-ray. In the present study, we aimed to evaluate the concentration of the trace elements in the scalp hair sample through XRF spectroscopy using signal processing techniques as a screening tool for prostate cancer. Methods: Hair samples of 22 men (including 11 healthy and 11 patients) were analyzed. All the sample donors were Iranian men. EDXRF method was used for the measurements. Signals were analyzed, and signal features such as mean, root-mean-square (RMS), variance, and standard deviation, skewness, and energy were investigated. The Man-Whitney U test was used to compare the trace element concentrations. The analysis of variance (ANOVA) test was used to identify which extracted feature could help to identify healthy and patient people. P values ≤ 0.05 were considered statistically significant. Statistical analysis was performed using SPSS 16.0 software. Results: The mean±SD age was 67.8±8.7 years in the patient group and 61.4±6.9 years in the healthy group. There were statistically significant differences in the aluminum (Al, P<0.001), silicon (Si, P=0.006), and phosphorus (P, P=0.028) levels between healthy and patient groups. Skewness and variance were found to be relevant in identifying people with cancer, as signal features. Conclusion: The use of EDXRF is a feasible method to study the concentration of elements in the hair sample, and this technique may be effective in prostate cancer screening. Further study with a large sample size will be required to elucidate the efficacy of the present method in prostate cancer screening.

4.
J Cell Physiol ; 234(11): 20028-20035, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30982979

RESUMO

Here, the effects of combinatorial cancer therapy including radiotherapy (RT) and radiofrequency (RF) hyperthermia in the presence of gold-coated iron oxide nanoparticles (Au@IONPs), as a thermo-radio-sensitizer, are reported. The level of cell death and the ratio of Bax/Bcl2 genes, involved in the pathway of apoptosis, were measured to evaluate the synergistic effect of Au@IONPs-mediated RF hyperthermia and RT. MCF-7 human breast adenocarcinoma cells were treated with different concentrations of Au@IONPs. After incubation with NPs, the cells were exposed to RF waves (13.56 MHz; 100 W; 15 min). At the same time, thermometry was performed with an infrared (IR) camera. Then, the cells were exposed to 6 MV X-ray at various doses of 2 and 4 Gy. MTT (3-[4,5-dimethylthiazol-2-y1]-2,5-diphenyltetrazolium bromide) assay was performed to evaluate cell viability and quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the expression ratio of Bax/Bcl2. Cellular uptake of nanoparticles was confirmed qualitatively and quantitatively. The results obtained from MTT assay and qRT-PCR studies showed that NPs and RF hyperthermia had no significant effect when applied separately, while their combination had synergistic effects on cell viability percentage and the level of apoptosis induction. A synergistic effect was also observed when the cancer cells were treated with a combination of NPs, RF hyperthermia, and RT. On the basis of the obtained results, it may be concluded that the use of magneto-plasmonic NPs in the process of hyperthermia and RT of cancer holds a great promise to develop a new combinatorial cancer therapy strategy.


Assuntos
Neoplasias da Mama/terapia , Hipertermia Induzida , Terapia por Radiofrequência , Sobrevivência Celular , Terapia Combinada , Feminino , Ouro , Humanos , Hidrodinâmica , Células MCF-7 , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Raios X , Proteína X Associada a bcl-2/metabolismo
5.
Pharmacol Res ; 143: 178-185, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30611856

RESUMO

The current interest in cancer research is being shifted from individual therapy to combinatorial therapy. In this contribution, a novel multifunctional nanoplatform comprising alginate nanogel co-loaded with cisplatin and gold nanoparticles (AuNPs) has been firstly developed to combine photothermal therapy and chemotherapy. The antitumor efficacy of the as-prepared nanocomplex was tested against CT26 colorectal tumor model. The nanocomplex showed an improved chemotherapy efficacy than free cisplatin and caused a significantly higher tumor inhibition rate. The in vivo thermometry results indicated that the tumors treated with the nanocomplex had faster temperature rise rate under 532 nm laser irradiation and received dramatically higher thermal doses due to optical absorption properties of AuNPs. The combined action of chemo-photothermal therapy using the nanocomplex dramatically suppressed tumor growth up to 95% of control and markedly prolonged the animal survival rate. Moreover, tumor metabolism was quantified by [18F]FDG (2-deoxy-2-[18F]fluoro-D-glucose)-positron emission tomography (PET) imaging and revealed that the combination of the nanocomplex and laser irradiation have the potential to eradicate microscopic residual tumor to prevent cancer relapse. Therefore, the nanocomplex can afford a potent anticancer efficacy whereby heat and drug can be effectively deliver to the tumor, and at the same time the high dose-associated side effects due to the separate application of chemotherapy and thermal therapy could be potentially reduced.


Assuntos
Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Ouro/administração & dosagem , Hipertermia Induzida , Nanopartículas Metálicas/administração & dosagem , Nanogéis/administração & dosagem , Neoplasias/terapia , Fotoquimioterapia , Alginatos/administração & dosagem , Animais , Linhagem Celular Tumoral , Terapia Combinada , Fluordesoxiglucose F18 , Lasers , Masculino , Camundongos Endogâmicos BALB C , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Neoplasias/patologia , Compostos Radiofarmacêuticos
6.
Radiat Environ Biophys ; 57(4): 405-418, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30203233

RESUMO

Recently, gold-coated iron oxide nanoparticles (Au@IONPs) have received a great deal of attention in cancer therapy. In this in vitro study we aimed to investigate the anti-cancer effects of Au@IONPs core-shell nanoparticles when applied in thermo-radiotherapy. Moreover, we investigated the level of apoptosis induced in U87-MG human glioma cells after receiving a combinatorial treatment regimen (Au@IONPs + hyperthermia + radiotherapy). Firstly, the Au@IONPs nanocomplex was prepared and characterized. Cytotoxicity of the nanoparticles (various concentrations; 4 h incubation time) was investigated on U87-MG cells and finally the concentrations of 10 and 15 µg/mL were selected for further studies. After incubation of the cells with nanoparticles, they received hyperthermia (43 °C; 1 h) and then were immediately exposed to 6 MV X-ray (2 and 4 Gy). Following the treatments, MTT assay was used to analyze cell viability and flow cytometry was used to determine the level of apoptosis in each treatment group. The results revealed that nanoparticles have no significant cytotoxicity at concentrations lower than 10 µg/mL. Also, we observed that nanoparticles are able to enhance the cytotoxic effect of hyperthermia and radiation. The major mode of cell death was apoptosis when nanoparticles, hyperthermia and radiation were concomitantly applied to cancer cells. In conclusion, Au@IONP nanoparticle can be considered as a good thermo-radio-sensitizer which triggers significant levels of apoptosis in cancer therapy. In this in vitro study, we report the anti-cancer effects of gold-coated iron oxide nanoparticles (Au@IONPs) when applied in thermo-radiotherapy.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Compostos Férricos/química , Compostos Férricos/farmacologia , Glioma/patologia , Ouro/química , Nanopartículas/química , Linhagem Celular Tumoral , Glioma/radioterapia , Humanos , Hipertermia Induzida , Radiossensibilizantes/química , Radiossensibilizantes/farmacologia
7.
Lasers Med Sci ; 32(7): 1469-1477, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28674789

RESUMO

Because of their great scientific and technological potentials, iron oxide nanoparticles (IONPs) have been the focus of extensive investigations in biomedicine over the past decade. Additionally, the surface plasmon resonance effect of gold nanoparticles (AuNPs) makes them a good candidate for photothermal therapy applications. The unique properties of both IONPs (magnetic) and AuNPs (surface plasmon resonance) may lead to the development of a multi-modal nanoplatform to be used as a magnetic resonance imaging (MRI) contrast agent and as a nanoheater for photothermal therapy. Herein, core-shell gold-coated IONPs (Au@IONPs) were synthesized and investigated as an MRI contrast agent and as a light-responsive agent for cancer photothermal therapy.The synthesized Au@IONPs were characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential analysis. The transverse relaxivity (r 2) of the Au@IONPs was measured using a 3-T clinical MRI scanner. Through a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the cytotoxicity of the Au@IONs was examined on a KB cell line, derived from the epidermal carcinoma of a human mouth. Moreover, the photothermal effects of Au@IONPs in the presence of a laser beam (λ = 808 nm; 6.3 W/cm2; 5 min) were studied.The results show that the Au@IONPs are spherical with a hydrodynamic size of 33 nm. A transverse relaxivity of 95 mM-1 S-1 was measured for the synthesized Au@IONPs. It is evident from the MTT results that no significant cytotoxicity in KB cells occurs with Au@IONPs. Additionally, no significant cell damage induced by the laser is observed. Following the photothermal treatment using Au@IONPs, approximately 70% cell death is achieved. It is found that cell lethality depended strongly on incubation period and the Au@IONP concentration.The data highlight the potential of Au@IONPs as a dual-function MRI contrast agent and photosensitizer for cancer photothermal therapy.


Assuntos
Ouro/química , Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Neoplasias/terapia , Fototerapia/métodos , Nanomedicina Teranóstica , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Nanopartículas de Magnetita/ultraestrutura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Espectrofotometria Ultravioleta
8.
J Pineal Res ; 61(4): 411-425, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27555371

RESUMO

Osteoarthritis (OA) is a degenerative joint disease characterized by progressive erosion of articular cartilage. As chondrocytes are the only cell type forming the articular cartilage, their gradual loss is the main cause of OA. There is a substantial body of published research that suggests reactive oxygen species (ROS) are major causative factors for chondrocyte damage and OA development. Oxidative stress elicited by ROS is capable of oxidizing and subsequently disrupting cartilage homeostasis, promoting catabolism via induction of cell death and damaging numerous components of the joint. IL-1ß and TNF-α are crucial inflammatory factors that play pivotal roles in the pathogenesis of OA. In this process, the mitochondria are the major source of ROS production in cells, suggesting a role of mitochondrial dysfunction in this type of arthritis. This may also be promoted by inflammatory cytokines such as IL-1ß and TNF-α which contribute to chondrocyte death. In patients with OA, the expression of endoplasmic reticulum (ER) stress-associated molecules is positively correlated with cartilage degeneration. Melatonin and its metabolites are broad-spectrum antioxidants and free radical scavengers which regulate a variety of molecular pathways such as inflammation, proliferation, apoptosis, and metastasis in different pathophysiological situations. Herein, we review the effects of melatonin on OA, focusing on its ability to regulate apoptotic processes and ER and mitochondrial activity. We also evaluate likely protective effects of melatonin on OA pathogenesis.


Assuntos
Apoptose , Condrócitos/metabolismo , Melatonina/metabolismo , Osteoartrite/metabolismo , Transdução de Sinais , Animais , Condrócitos/patologia , Estresse do Retículo Endoplasmático , Humanos , Interleucina-1beta/metabolismo , Osteoartrite/patologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
J Therm Biol ; 62(Pt A): 84-89, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27839555

RESUMO

Hyperthermia is considered as a new approach for cancer therapy. Non-selectivity of tissue heating in conventional hyperthermia methods results in collateral damages to healthy tissues and this is the greatest obstacle against hyperthermia in clinic. Herein, to promote the efficiency of conventional hyperthermia methods, nanoparticle-enhanced heating from 1MHz ultrasound was investigated in vitro and in vivo. The experiments were conducted on two mediums; (1) various colloidal nano-solutions (in vitro section) and (2) CT26 mouse colon carcinoma tumor loaded by various nanoparticles (in vivo section). Experiments in this study were designed to evaluate and compare the sonosensitizing potentials of gold nanoparticles (AuNPs), iron oxide nanoparticles (IONPs), and nano-graphene oxide (NGO) in enhancement of ultrasound-induced heat generation. The temperature profile of the solutions and the animal tumors containing nanoparticles were recorded during sonication. An increased heating rate during sonication was observed for both in vitro and in vivo mediums when the nanoparticles were present. Our in vitro experiments revealed that percentages of increases in temperature elevation rates were 12.5%, 20.4%, and 37.5% for IONPs, NGO, and AuNPs, respectively. Compared to the nanoparticles-free tumors, direct injection of AuNPs, NGO and IONPs into the tumors and subsequent sonication for 10min caused an increased temperature elevation rate of 37.5%, 24.1% and 16.1%, respectively. AuNPs, IONPs and NGO are proposed as ultrasound responsive nanomaterials with the potential of focusing the energy of acoustic waves on the tumor and inducing localized hyperthermia.


Assuntos
Neoplasias do Colo/fisiopatologia , Hipertermia Induzida/métodos , Nanopartículas Metálicas/química , Termografia , Ondas Ultrassônicas , Animais , Linhagem Celular Tumoral , Ouro/administração & dosagem , Ouro/química , Temperatura Alta , Hipertermia Induzida/instrumentação , Técnicas In Vitro , Masculino , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula
10.
Lasers Med Sci ; 29(2): 847-53, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23917412

RESUMO

The application of gold nanoparticles (AuNPs) in nanophotothermolysis as a great photosensitizer is expanding, and this subject is a challenging area for cancer therapy. Recent technological advances in nanoscale manufacturing and synthesis promise the development of highly beneficial and innovative methods for the targeting of cancer. However, there is an obstacle to conducting effective laser-based nanosurgery because AuNPs are activated by visible or near infrared wavelengths, and the penetration of a laser beam inside the body is limited by some absorbents, such as melanin, water, and blood molecules. Considering everything stated above, we have suggested the application of a folate-conjugated AuNP as an effective agent for targeted nanophotothermolysis and the application of an optical fiber to transport the laser light from the source to the target tissue inside the body. Thus, a new method of nanosurgery in which a surgeon is able to perform surgery at the cellular or even at the subcellular level may be possible.


Assuntos
Nanopartículas/uso terapêutico , Nanotecnologia/métodos , Neoplasias/cirurgia , Receptor 1 de Folato/metabolismo , Ouro , Humanos , Terapia a Laser/métodos , Terapia de Alvo Molecular , Nanotecnologia/instrumentação , Fibras Ópticas , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fototerapia/métodos
11.
Lasers Med Sci ; 29(3): 939-48, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24013622

RESUMO

The use of lasers has emerged to be highly promising for cancer therapy modalities, most commonly, the photothermal therapy method. Unfortunately, the most common disadvantage of laser therapy is its nonselectivity and requirement of high power density. The use of plasmonic nanoparticles as highly enhanced photoabsorbing agents has thus introduced a much more selective and efficient cancer therapy strategy. In this study, we aimed to demonstrate the selective targeting and destruction of mouth epidermal carcinoma cells (KB cells) using the photothermal therapy of folate-conjugated gold nanorods (F-GNRs). Considering the beneficial characteristics of GNRs and overexpression of the folate receptor by KB cells, we selected F-GNRs as a targeted photothermal therapy agent. Cell viability was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptosis was determined by flow cytometry using an annexin V-fluorescein isothiocyanate/propidium iodide apoptosis detection kit. No cell damage or cytotoxicity from the individual treatment of laser light or F-GNRs was observed. However, a 56% cell lethality was achieved for KB cells using combined plasmonic photothermal therapy of 20 µM F-GNRs with seven pulses of laser light and 6-h incubation periods. Cell lethality strongly depends on the concentration of F-GNRs and the incubation period that is mainly due to the induction of apoptosis. This targeted damage is due to the F-GNRs present in the cancer cells strongly absorbing near-infrared laser light and rapidly converting it to heat. This new therapeutic avenue for cancer therapy merits further investigation using in vivo models for application in humans.


Assuntos
Epiderme/patologia , Ácido Fólico/uso terapêutico , Ouro/química , Hipertermia Induzida , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/radioterapia , Nanotubos/química , Fototerapia , Anexina A5/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Epiderme/efeitos dos fármacos , Epiderme/efeitos da radiação , Ácido Fólico/farmacologia , Ouro/toxicidade , Humanos , Raios Infravermelhos , Lasers , Neoplasias Bucais/patologia , Nanotubos/toxicidade , Espectrofotometria Ultravioleta
12.
Theranostics ; 14(2): 571-591, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169524

RESUMO

Various classes of nanotheranostics have been developed for enhanced tumor imaging and therapy. However, key limitations for a successful use of nanotheranostics include their targeting specificity with limited off-site tissue accumulation as well as their distribution and prolonged retention throughout the entire tumor. Due to their inherent tumor-tropic properties, the use of mesenchymal stem cells (MSCs) as a "Trojan horse" has recently been proposed to deliver nanotheranostics more effectively. This review discusses the current status of "cellular nanotheranostics" for combined (multimodal) imaging and therapy in preclinical cancer models. Emphasis is placed on the limited knowledge of the signaling pathways and molecular mechanisms of MSC tumor-tropism, and how such information may be exploited to engineer MSCs in order to further improve tumor homing and nanotheranostic delivery using image-guided procedures.


Assuntos
Células-Tronco Mesenquimais , Neoplasias , Humanos , Nanomedicina Teranóstica , Neoplasias/tratamento farmacológico , Diagnóstico por Imagem , Células-Tronco Mesenquimais/metabolismo
13.
Mol Imaging Biol ; 24(2): 198-207, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34581954

RESUMO

Cancer vaccination using tumor antigen-primed dendritic cells (DCs) was introduced in the clinic some 25 years ago, but the overall outcome has not lived up to initial expectations. In addition to the complexity of the immune response, there are many factors that determine the efficacy of DC therapy. These include accurate administration of DCs in the target tissue site without unwanted cell dispersion/backflow, sufficient numbers of tumor antigen-primed DCs homing to lymph nodes (LNs), and proper timing of immunoadjuvant administration. To address these uncertainties, proton (1H) and fluorine (19F) magnetic resonance imaging (MRI) tracking of ex vivo pre-labeled DCs can now be used to non-invasively determine the accuracy of therapeutic DC injection, initial DC dispersion, systemic DC distribution, and DC migration to and within LNs. Magnetovaccination is an alternative approach that tracks in vivo labeled DCs that simultaneously capture tumor antigen and MR contrast agent in situ, enabling an accurate quantification of antigen presentation to T cells in LNs. The ultimate clinical premise of MRI DC tracking would be to use changes in LN MRI signal as an early imaging biomarker to predict the efficacy of tumor vaccination and anti-tumor response long before treatment outcome becomes apparent, which may aid clinicians with interim treatment management.


Assuntos
Apresentação de Antígeno , Células Dendríticas , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Vacinação
14.
Nanotheranostics ; 6(4): 350-364, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707061

RESUMO

Recent years have seen considerable progress in the development of nanomedicine by the advent of 2D nanomaterials serving as ideal platforms to integrate multiple theranostic functions. We synthesized multifunctional stimuli-responsive 2D-based smart nanocomposites (NCs), comprising gold nanoparticles (AuNPs) and superparamagnetic iron oxides (SPIOs) scaffolded within graphene oxide (GO) nanosheets, coated with doxorubicin (DOX)-loaded 1-tetradecanol (TD), and further modified with an alginate (Alg) polymer. TD is a phase-change material (PCM) that confines DOX molecules to the GO surface and melts when the temperature exceeds its melting point (Tm=39 °C), causing the PCM to release its drug payload. By virtue of their strong near-infrared (NIR) light absorption and high photothermal conversion efficiency, GO nanosheets may enable photothermal therapy (PTT) and activate a phase change to trigger DOX release. Upon NIR irradiation of NCs, a synergistic thermo-chemotherapeutic effect can be obtained by GO-mediated PTT, resulting an accelerated and controllable drug release through the PCM mechanism. The biodistribution of these NCs could also be imaged with computed tomography (CT) and magnetic resonance (MR) imaging in vitro and in vivo. Hence, this multifunctional nanotheranostic platform based on 2D nanomaterials appears a promising candidate for multimodal image-guided cancer therapy.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Liberação Controlada de Fármacos , Ouro , Grafite , Imageamento por Ressonância Magnética , Nanomedicina Teranóstica/métodos , Distribuição Tecidual , Tomografia Computadorizada por Raios X
15.
J Biomed Phys Eng ; 11(3): 281-288, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34189116

RESUMO

BACKGROUND: Photothermal therapy (PTT) is a promising method in the field of cancer hyperthermia. In this method, interaction between laser light and photosensitizer material, such as plasmonic nanoparticles, leads into a localized heating. Recent efforts in the area of PTT aim to exploit targeting strategies for preferential accumulation of plasmonic nanoparticles within the tumor. OBJECTIVE: To investigate the impact of magneto-plasmonic (Au@Fe2O3) nanoparticles on temperature profile of CT26 tumor, bearing mice were irradiated by NIR laser. MATERIAL AND METHODS: In this in vivo study, Au@Fe2O3 NPs were injected intraperitoneally to Balb/c mice bearing CT26 colorectal tumor. Immediately after injection, a magnet (magnetic field strength of 0.4 Tesla) was placed on the tumor site for 6 hours in order to concentrate nanoparticles inside the tumor. In the next step, the tumors were exposed with NIR laser source (808 nm; 2 W/cm2; 5 min). RESULTS: Tumor temperature without magnetic targeting increased ~7 ± 0.9 °C after NIR irradiation, whereas the tumors in magnetic targeted group experienced a temperature rise of ~12 ± 1.4 °C. CONCLUSION: It is concluded that Au@Fe2O3 nanoparticle is a good candidate for therapeutic nanostructure in cancer photothermal therapy.

16.
Anticancer Agents Med Chem ; 21(17): 2429-2442, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33342419

RESUMO

BACKGROUND: Recent advances in nanotechnology have led to the use of nanomaterials in the diagnosis of cancer by imaging techniques. OBJECTIVE: This study aimed to synthesize fluorescein-conjugated gold nanoparticles and study the parameters affecting the loading of fluorescein on synthesized coated gold nanoparticles with the ability to be used in medical diagnostic methods. METHODS: The synthesized gold nanoparticles were functionalized with polyethylene glycol. Then, these particles were conjugated with fluorescein under different conditions. To investigate the optical and structural features as well as the factors affecting the loading, the nanoparticles were evaluated by ultraviolet-visible, fluorescence and FT-IR spectrophotometer, fluorescence spectrophotometer, transmission electron microscopy, dynamic light scattering, and zeta potential measuring device. Also, the use of these particles in cancer diagnosis on the skin melanoma cell (B16F10) was examined using a fluorescence microscope. RESULTS: PEG-coated spherical gold nanoparticles were synthesized as a carrier for the fluorescein dye detector. The coating agent concentration, incubation time, temperature, and pH of the medium affected the loading efficiency of fluorescein on the nanoparticles. Also, optimal conditions for use in the diagnostic applications were investigated. Ten micromolar of the sample were selected for cell imaging studies. The fluorescence signal of B16F10 cells containing nanoparticles was relatively strong, indicating the amount of nanoparticles uptaken by the cells. CONCLUSION: The results showed that by designing fluorescent gold nanoparticles with fluorescein as fluorescent detectors and considering their diagnostic importance, an efficient way to diagnose incurable diseases can be found.


Assuntos
Fluoresceína/química , Ouro/química , Melanoma/diagnóstico , Nanopartículas Metálicas/química , Animais , Camundongos , Microscopia de Fluorescência , Células Tumorais Cultivadas
17.
IET Nanobiotechnol ; 15(7): 594-601, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34695296

RESUMO

This study was performed to specify the efficiency of imaging nanoparticle concentration as contrast media in dual-energy computed tomography (DECT). Gold nanoparticles (AuNPs) and gold nanoparticles-conjugated folic acid through cysteamine (FA-Cya-AuNPs) were both considered as contrast agents. Characterization of NPs was performed using Dynamic Light Scattering (DLS) and zeta potential. The hemocompatibility of NPs was confirmed by different blood parameters such as white blood cell, red cell distribution width, hemoglobin, lymphocytes counts and haemolysis assay. DECT algorithm was confirmed using calibration phantom at different concentrations of NPs and tube potentials (80 and 140 kVp). Then, DECT was used to quantify the concentration of both AuNPs and FA-Cys-AuNPs in human nasopharyngeal cancer cells. Mice were injected with non-targeted AuNPs and targeted AuNps at a concentration of 3 × 103 µg/ml. Then, they were scanned with different tube potentials. The concentration of nanoparticles in the various organs of nude mice was measured through DECT imaging and inductively coupled plasma mass spectrometry (ICP-MS) analysis. The results of DECT images were compared with ICP-MS analysis and indicated that they were approximately similar. In sum, FA-Cys-AuNPs can be a proper candidate for targeted contrast media in DECT molecular scanning of human nasopharyngeal tumours.


Assuntos
Nanopartículas Metálicas , Neoplasias Nasofaríngeas , Animais , Linhagem Celular Tumoral , Ouro , Camundongos , Camundongos Nus , Neoplasias Nasofaríngeas/diagnóstico por imagem , Neoplasias Nasofaríngeas/tratamento farmacológico , Tomografia
18.
J Control Release ; 330: 49-60, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33340564

RESUMO

Microbubbles (MBs) have been extensively investigated in the field of biomedicine for the past few decades. Ultrasound and laser are the most frequently used sources of energy to produce MBs. Traditional acoustic methods induce MBs with poor localized areas of action. A high energy level is required to generate MBs through the focused continuous laser, which can be harmful to healthy tissues. As an alternative, plasmonic light-responsive nanoparticles, such as gold nanoparticles (AuNPs), are preferably used with continuous laser to decrease the energy threshold and reduce the bubbles area of action. It is also well-known that the utilization of the pulsed lasers instead of the continuous lasers decreases the needed AuNPs doses as well as laser power threshold. When well-confined bubbles are generated in biological environments, they play their own unique mechanical and optical roles. The collapse of a bubble can mechanically affect its surrounding area. Such a capability can be used for cargo delivery to cancer cells and cell surgery, destruction, and transfection. Moreover, the excellent ability of light scattering makes the bubbles suitable for cancer imaging. This review firstly provides an overview of the fundamental aspects of AuNPs-mediated bubbles and then their emerging applications in the field of cancer nanotechnology will be reviewed. Although the pre-clinical studies on the AuNP-mediated bubbles have shown promising data, it seems that this technique would not be applicable to every kind of cancer. The clinical application of this technique may basically be limited to the good accessible lesions like the superficial, intracavity and intraluminal tumors. The other essential challenges against the clinical translation of AuNP-mediated bubbles are also discussed.


Assuntos
Nanopartículas Metálicas , Neoplasias , Ouro , Humanos , Lasers , Nanotecnologia , Neoplasias/diagnóstico por imagem
19.
IET Nanobiotechnol ; 15(3): 329-337, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34694668

RESUMO

Applying toxic chemical to the synthesis of stable gold nanoparticles is one of the limitations of gold nanoparticles for therapeutic applications such as photothermal therapy. Plant compounds such as apigenin (API) with therapeutic potential can be applied in the synthesis of gold nanoparticles. API-coated gold nanoparticles (Api@AuNPs) with an average size of 19.1 nm and a surface charge of -4.3 mV have been synthesized by a simple and efficient technique. The stability of Api@AuNPs in the biological environment was verified through UV-Vis spectroscopy. Based on Raman and FTIR spectroscopy analysis, chemical binding of API on the surface of Api@AuNPs through hydroxyl and carbonyl functional groups was found to be the main reason for the stability of the Api@AuNPs in comparison with citrate-coated gold nanoparticles (Cit@AuNPs). The synthesized Api@AuNPs do not cause major toxic effects up to 128 ppm. Api@AuNP-mediated photothermal therapy leads to the indiscriminate eradication of almost half of both mouse fibroblastic (L929) and colorectal cancer (CT26) cells. Flow-cytometry analysis revealed that the cell death mechanism is mainly apoptosis. In the apoptosis triggered cell death in photothermal treatment, Api@AuNPs are preferred over commonly used gold nanoparticles in photothermal treatments which mostly trigger the necrosis cell death pathway.


Assuntos
Neoplasias Colorretais , Nanopartículas Metálicas , Animais , Apigenina , Morte Celular , Neoplasias Colorretais/tratamento farmacológico , Ouro , Camundongos
20.
Adv Pharm Bull ; 11(4): 693-699, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34888216

RESUMO

Purpose: The present study was performed to examine whether caspofungin-coated gold nanoparticles (CAS-AuNPs) may offer the right platform for sensitivity induction in resistant isolates. Methods: A total of 58 archived Candida species were enrolled in the research. The identification of Candida spp. was performed using polymerase chain reaction-restriction fragment length polymorphism and HWP1 gene amplification approaches. The conjugated CAS-AuNPs were synthesized and then characterized using transmission electron microscopy (TEM) and Zetasizer system to determine their morphology, size, and charge. Furthermore, the efficacy was assessed based on the Clinical and Laboratory Standards Institute M60. Finally, the interaction of CAS-AuNPs with Candida element was evaluated via scanning electron microscopy (SEM). Results: According to the TEM results, the synthesized CAS-AuNPs had a spherical shape with an average size of 20 nm. The Zeta potential of CAS-AuNPs was -38.2 mV. Statistical analyses showed that CAS-AuNPs could significantly reduce the minimum inhibitory concentration against C. albicans (P =0.0005) and non-albicans Candida (NAC) species (P < 0.0001). All isolates had a MIC value of ≥ 4 µg/ml for CAS, except for C. glabrata. The results of SEM analysis confirmed the effects of AuNPs on the cell wall structure of C. globrata with the formation of pores. Conclusion: According to findings, CAS-AuNPs conjugates had significant antifungal effects against Candida spp. Therefore, it can be concluded that the encapsulation of antifungal drugs in combination with NPs not only diminishes side effects but also enhances the effectiveness of the medications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA