RESUMO
The contribution of the microenvironment to pancreatic acinar-to-ductal metaplasia (ADM), a preneoplastic transition in oncogenic Kras-driven pancreatic cancer progression, is currently unclear. Here we show that disruption of paracrine Hedgehog signaling via genetic ablation of Smoothened (Smo) in stromal fibroblasts in a Kras(G12D) mouse model increased ADM. Smo-deleted fibroblasts had higher expression of transforming growth factor-α (Tgfa) mRNA and secreted higher levels of TGFα, leading to activation of EGFR signaling in acinar cells and increased ADM. The mechanism involved activation of AKT and noncanonical activation of the GLI family transcription factor GLI2. GLI2 was phosphorylated at Ser230 in an AKT-dependent fashion and directly regulated Tgfa expression in fibroblasts lacking Smo Additionally, Smo-deleted fibroblasts stimulated the growth of Kras(G12D)/Tp53(R172H) pancreatic tumor cells in vivo and in vitro. These results define a non-cell-autonomous mechanism modulating Kras(G12D)-driven ADM that is balanced by cross-talk between Hedgehog/SMO and AKT/GLI2 pathways in stromal fibroblasts.
Assuntos
Carcinoma Ductal Pancreático , Metaplasia/genética , Metaplasia/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Proliferação de Células/genética , Células Cultivadas , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Fibroblastos/citologia , Fibroblastos/patologia , Deleção de Genes , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/patologia , Transdução de Sinais/genética , Fator de Crescimento Transformador alfa/metabolismo , Células Tumorais Cultivadas , Proteína Gli2 com Dedos de ZincoRESUMO
BACKGROUND: Male dogs can develop spontaneous prostate cancer, which is similar physiologically to human disease. Recently, Tweedle and coworkers have developed an orthotopic canine prostate model allowing implanted tumors and therapeutic agents to be tested in a more translational large animal model. We used the canine model to evaluate prostate-specific membrane antigen (PSMA)-targeted gold nanoparticles as a theranostic approach for fluorescence (FL) imaging and photodynamic therapy (PDT) of early stage prostate cancer. METHODS: Dogs (four in total) were immunosuppressed with a cyclosporine-based immunosuppressant regimen and their prostate glands were injected with Ace-1-hPSMA cells using transabdominal ultrasound (US) guidance. Intraprostatic tumors grew in 4-5 weeks and were monitored by ultrasound (US). When tumors reached an appropriate size, dogs were injected intravenously (iv) with PSMA-targeted nano agents (AuNPs-Pc158) and underwent surgery 24 h later to expose the prostate tumors for FL imaging and PDT. Ex vivo FL imaging and histopathological studies were performed to confirm PDT efficacy. RESULTS: All dogs had tumor growth in the prostate gland as revealed by US. Twenty-four hours after injection of PSMA-targeted nano agents (AuNPs-Pc158), the tumors were imaged using a Curadel FL imaging device. While normal prostate tissue had minimal fluorescent signal, the prostate tumors had significantly increased FL. PDT was activated by irradiating specific fluorescent tumor areas with laser light (672 nm). PDT bleached the FL signal, while fluorescent signals from the other unexposed tumor tissues were unaffected. Histological analysis of tumors and adjacent prostate revealed that PDT damaged the irradiated areas to a depth of 1-2 mms with the presence of necrosis, hemorrhage, secondary inflammation, and occasional focal thrombosis. The nonirradiated areas showed no visible damages by PDT. CONCLUSION: We have successfully established a PSMA-expressing canine orthotopic prostate tumor model and used the model to evaluate the PSMA-targeted nano agents (AuNPs-Pc158) in the application of FL imaging and PDT. It was demonstrated that the nano agents allowed visualization of the cancer cells and enabled their destruction when they were irradiated with a specific wavelength of light.
Assuntos
Antineoplásicos , Nanopartículas Metálicas , Fotoquimioterapia , Neoplasias da Próstata , Masculino , Humanos , Cães , Animais , Ouro/uso terapêutico , Fotoquimioterapia/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Próstata/diagnóstico por imagem , Próstata/patologia , Antineoplásicos/uso terapêutico , Linhagem Celular TumoralRESUMO
The application of proteinaceous toxins for cell ablation is limited by their high on- and off-target toxicity, severe side effects, and a narrow therapeutic window. The selectivity of targeting can be improved by intein-based toxin reconstitution from two dysfunctional fragments provided their cytoplasmic delivery via independent, selective pathways. While the reconstitution of proteins from genetically encoded elements has been explored, exploiting cell-surface receptors for boosting selectivity has not been attained. We designed a robust splitting algorithm and achieved reliable cytoplasmic reconstitution of functional diphtheria toxin from engineered intein-flanked fragments upon receptor-mediated delivery of one of them to the cells expressing the counterpart. Retargeting the delivery machinery toward different receptors overexpressed in cancer cells enables selective ablation of specific subpopulations in mixed cell cultures. In a mouse model, the transmembrane delivery of a split-toxin construct potently inhibits the growth of xenograft tumors expressing the split counterpart. Receptor-mediated delivery of engineered split proteins provides a platform for precise therapeutic and experimental ablation of tumors or desired cell populations while also greatly expanding the applicability of the intein-based protein transsplicing.
Assuntos
Toxinas Bacterianas/administração & dosagem , Toxinas Bacterianas/química , Citoplasma/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Inteínas , Neoplasias/tratamento farmacológico , Animais , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Linhagem Celular Tumoral , Citoplasma/genética , Toxina Diftérica/administração & dosagem , Toxina Diftérica/química , Toxina Diftérica/genética , Toxina Diftérica/metabolismo , Feminino , Xenoenxertos , Humanos , Imunotoxinas/administração & dosagem , Imunotoxinas/química , Imunotoxinas/genética , Imunotoxinas/metabolismo , Camundongos , Camundongos Nus , Neoplasias/genética , Neoplasias/metabolismo , Domínios Proteicos , Transporte Proteico , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismoRESUMO
BACKGROUND: Breast cancer (BC) is the most common cancer in women and the leading cause of cancer-associated mortality in women. In particular, triple-negative BC (TNBC) has the highest rate of mortality due in large part to the lack of targeted treatment options for this subtype. Thus, there is an urgent need to identify new molecular targets for TNBC treatment. RALA and RALB are small GTPases implicated in growth and metastasis of a variety of cancers, although little is known of their roles in BC. METHODS: The necessity of RALA and RALB for TNBC tumor growth and metastasis were evaluated in vivo using orthotopic and tail-vein models. In vitro, 2D and 3D cell culture methods were used to evaluate the contributions of RALA and RALB during TNBC cell migration, invasion, and viability. The association between TNBC patient outcome and RALA and RALB expression was examined using publicly available gene expression data and patient tissue microarrays. Finally, small molecule inhibition of RALA and RALB was evaluated as a potential treatment strategy for TNBC in cell line and patient-derived xenograft (PDX) models. RESULTS: Knockout or depletion of RALA inhibited orthotopic primary tumor growth, spontaneous metastasis, and experimental metastasis of TNBC cells in vivo. Conversely, knockout of RALB increased TNBC growth and metastasis. In vitro, RALA and RALB had antagonistic effects on TNBC migration, invasion, and viability with RALA generally supporting and RALB opposing these processes. In BC patient populations, elevated RALA but not RALB expression is significantly associated with poor outcome across all BC subtypes and specifically within TNBC patient cohorts. Immunohistochemical staining for RALA in patient cohorts confirmed the prognostic significance of RALA within the general BC population and the TNBC population specifically. BQU57, a small molecule inhibitor of RALA and RALB, decreased TNBC cell line viability, sensitized cells to paclitaxel in vitro and decreased tumor growth and metastasis in TNBC cell line and PDX models in vivo. CONCLUSIONS: Together, these data demonstrate important but paradoxical roles for RALA and RALB in the pathogenesis of TNBC and advocate further investigation of RALA as a target for the precise treatment of metastatic TNBC.
Assuntos
Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Proteínas ral de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Camundongos , Metástase Neoplásica , Paclitaxel/uso terapêutico , Prognóstico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ral de Ligação ao GTP/antagonistas & inibidores , Proteínas ral de Ligação ao GTP/genéticaRESUMO
BACKGROUND: Dedifferentiated liposarcomas (DDLPS) are mesenchymal tumors associated with universally poor response to treatment. Genomic amplification of murine double minute 2 (MDM2) is used as a diagnostic biomarker; however, no established biomarkers exist to guide DDLPS treatment. In the largest study of its kind, we report that the extent of MDM2 amplification, not simply the presence of MDM2 amplification, may be biologically important to the actions of DDLPS. PATIENTS AND METHODS: The distribution of MDM2 amplification in DDLPS was assessed using data from a commercial sequencing laboratory (n = 642) and The Cancer Genome Atlas (n = 57). Data from two retrospective clinical trials (n = 15, n = 16) and one prospective clinical trial (n = 25) were used to test MDM2's utility as a clinical biomarker. in vitro and in vivo assessments were conducted in DDLPS cell lines. RESULTS: Genomic MDM2 amplification follows a highly reproducible log-normal distribution. In patients with DDLPS treated with complete tumor resection, elevated MDM2 was associated with shortened time to recurrence as measured by genomic amplification (p = .003) and mRNA expression (p = .04). In patients requiring systemic therapy, higher MDM2 amplification was associated with reduced overall survival (p = .04). Doxorubicin treatment of DDLPS cells in vitro demonstrated variable sensitivity based on baseline MDM2 levels, and doxorubicin treatment elevated MDM2 expression. In vivo, treatment with doxorubicin followed by an MDM2 inhibitor improved doxorubicin sensitivity. CONCLUSION: MDM2 amplification levels in DDLPS follow a reproducible distribution and are associated with clinical outcomes and drug sensitivity. These results suggest that a prospective study of MDM2 as a predictive biomarker in DDLPS is warranted. IMPLICATIONS FOR PRACTICE: No validated biomarkers exist for treatment selection in dedifferentiated liposarcoma (DDLPS). Although murine double minute 2 (MDM2) is currently used for diagnosis, the clinical relevance of MDM2 amplification has yet to be fully assessed. This study found that MDM2 amplification follows a predictable distribution in DDLPS and correlates with clinical and biological outcomes. These data suggests that MDM2 amplification may be a useful biomarker in DDLPS.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Amplificação de Genes , Lipossarcoma/mortalidade , Recidiva Local de Neoplasia/mortalidade , Proteínas Proto-Oncogênicas c-mdm2/genética , Procedimentos Cirúrgicos Operatórios/mortalidade , Animais , Apoptose , Proliferação de Células , Terapia Combinada , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Docetaxel/administração & dosagem , Feminino , Seguimentos , Humanos , Lipossarcoma/genética , Lipossarcoma/terapia , Camundongos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/terapia , Prognóstico , Estudos Prospectivos , Estudos Retrospectivos , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , GencitabinaRESUMO
OBJECTIVE: Limited efficacy of immune checkpoint inhibitors in pancreatic ductal adenocarcinoma (PDAC) has prompted investigation into combination therapy. We hypothesised that interleukin 6 (IL-6) blockade would modulate immunological features of PDAC and enhance the efficacy of anti-programmed death-1-ligand 1 (PD-L1) checkpoint inhibitor therapy. DESIGN: Transcription profiles and IL-6 secretion from primary patient-derived pancreatic stellate cells (PSCs) were analyzed via Nanostring and immunohistochemistry, respectively. In vivo efficacy and mechanistic studies were conducted with antibodies (Abs) targeting IL-6, PD-L1, CD4 or CD8 in subcutaneous or orthotopic models using Panc02, MT5 or KPC-luc cell lines; and the aggressive, genetically engineered PDAC model (KrasLSL-G12D, Trp53LSL-R270H, Pdx1-cre, Brca2F/F (KPC-Brca2 mice)). Systemic and local changes in immunophenotype were measured by flow cytometry or immunohistochemical analysis. RESULTS: PSCs (n=12) demonstrated prominent IL-6 expression, which was localised to stroma of tumours. Combined IL-6 and PD-L1 blockade elicited efficacy in mice bearing subcutaneous MT5 (p<0.02) and Panc02 tumours (p=0.046), which was accompanied by increased intratumoural effector T lymphocytes (CD62L-CD44-). CD8-depleting but not CD4-depleting Abs abrogated the efficacy of combined IL-6 and PD-L1 blockade in mice bearing Panc02 tumours (p=0.0016). This treatment combination also elicited significant antitumour activity in mice bearing orthotopic KPC-luc tumours and limited tumour progression in KPC-Brca2 mice (p<0.001). Histological analysis revealed increased T-cell infiltration and reduced α-smooth muscle actin cells in tumours from multiple models. Finally, IL-6 and PD-L1 blockade increased overall survival in KPC-Brca2 mice compared with isotype controls (p=0.0012). CONCLUSIONS: These preclinical results indicate that targeted inhibition of IL-6 may enhance the efficacy of anti-PD-L1 in PDAC.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Carcinoma Ductal Pancreático/tratamento farmacológico , Interleucina-6/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Actinas/metabolismo , Animais , Antineoplásicos Imunológicos/administração & dosagem , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Interleucina-6/imunologia , Interleucina-6/metabolismo , Janus Quinases/metabolismo , Selectina L/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Células Estreladas do Pâncreas/imunologia , Células Estreladas do Pâncreas/metabolismo , Fatores de Transcrição STAT/metabolismo , Taxa de Sobrevida , Células Th1/metabolismo , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
This study aimed to enhance antitumor immune responses to pancreatic cancer via Ab-based blockade of IL-6 and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). Mice bearing s.c. or orthotopic pancreatic tumors were treated with blocking Abs to IL6 and/or CTLA-4. In both tumor models, dual IL-6 and CTLA-4 blockade significantly inhibited tumor growth. Additional investigations revealed that dual therapy induced an overwhelming infiltration of T cells into the tumor as well as changes in CD4+ T cell subsets. Dual blockade therapy elicited CD4+ T cells to secrete increased IFN-γ in vitro. Likewise, in vitro stimulation of pancreatic tumor cells with IFN-γ profoundly increased tumor cell production of CXCR3-specific chemokines, even in the presence of IL-6. In vivo blockade of CXCR3 prevented orthotopic tumor regression in the presence of the combination treatment, demonstrating a dependence on the CXCR3 axis for antitumor efficacy. Both CD4+ and CD8+ T cells were required for the antitumor activity of this combination therapy, as their in vivo depletion via Abs impaired outcomes. These data represent the first report to our knowledge of IL-6 and CTLA4 blockade as a means to regress pancreatic tumors with defined operative mechanisms of efficacy.
Assuntos
Interleucina-6 , Neoplasias Pancreáticas , Animais , Camundongos , Linfócitos T CD8-Positivos , Antígeno CTLA-4 , Interleucina-6/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Subpopulações de Linfócitos TRESUMO
The involvement of membrane-bound solute carriers (SLCs) in neoplastic transdifferentiation processes is poorly defined. Here, we examined changes in the SLC landscape during epithelial-mesenchymal transition (EMT) of pancreatic cancer cells. We show that two SLCs from the organic anion/cation transporter family, SLC22A10 and SLC22A15, favor EMT via interferon (IFN) α and γ signaling activation of receptor tyrosine kinase-like orphan receptor 1 (ROR1) expression. In addition, SLC22A10 and SLC22A15 allow tumor cell accumulation of glutathione to support EMT via the IFNα/γ-ROR1 axis. Moreover, a pan-SLC22A inhibitor lesinurad reduces EMT-induced metastasis and gemcitabine chemoresistance to prolong survival in mouse models of pancreatic cancer, thus identifying new vulnerabilities for human PDAC.
RESUMO
Cutaneous squamous cell carcinoma (cSCC) is the second most lethal skin cancer. Due to ultraviolet light-induced damage, cSCCs have a high mutation rate, but some genes are more frequently mutated in aggressive cSCCs. Lysine-specific histone methyltransferase 2D (KMT2D) has a two-fold higher mutation frequency in metastatic cSCCs relative to primary non-metastatic associated cSCCs. The role of KMT2D in more aggressive phenotypes in cSCC is uncharacterized. Studies of other tumor types suggest that KMT2D acts to suppress tumor development. To determine whether KMT2D loss has an impact on tumor characteristics, we disrupted KMT2D in a cSCC cell line using CRISPR-cas9 and performed phenotypic analyses. KMT2D loss modestly increased cell proliferation and colony formation (1.4- and 1.6-fold respectively). Cells lacking KMT2D showed increased rates of migration and faster cell cycle progression. In xenograft models, tumors with KMT2D loss showed slight increases in mitotic indices. Collectively, these findings suggest that KMT2D loss-of-function mutations may promote more aggressive and invasive behaviors in cSCC, suggesting that KMT2D-related pathways could be targets for cancer therapies. Future studies to determine the downstream genes and mechanism of phenotypic effect are needed.
RESUMO
Women with germ-line mutations of the BRCA1 tumor suppressor gene are highly susceptible to breast and ovarian cancer. The protein product of BRCA1 is involved in a broad spectrum of biological processes and interacts with many diverse proteins. One of these, BARD1, associates with BRCA1 to form a heterodimeric complex that is enzymatically active as an ubiquitin E3 ligase. Although the BRCA1/BARD1 heterodimer has been implicated in several aspects of BRCA1 function, its role in tumor suppression has not been evaluated. To address this question, we generated mouse strains carrying conditional alleles of either Bard1 or Brca1 and used Cre recombination to inactivate these genes in mammary epithelial cells. Significantly, the conditional Bard1- and Brca1-mutant mice developed breast carcinomas that are indistinguishable from each other (and from those of double conditional Bard1/Brca1-mutant animals) with respect to their frequency, latency, histopathology, and cytogenetic features. Reminiscent of the basal-like breast carcinomas seen in human BRCA1 mutation carriers, these tumors are "triple negative" for estrogen and progesterone receptor expression and HER2/neu amplification. They also express basal cytokeratins CK5 and CK14, have an elevated frequency of p53 lesions, and display high levels of chromosomal instability. The remarkable similarities between the mammary carcinomas of Bard1-, Brca1-, and Bard1/Brca1-mutant mice indicate that the tumor suppressor activities of both genes are mediated through the BRCA1/BARD1 heterodimer.
Assuntos
Proteína BRCA1/genética , Neoplasias Mamárias Animais/patologia , Mutação/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Animais , Proteína BRCA1/metabolismo , Instabilidade Cromossômica , Dimerização , Feminino , Marcação de Genes , Imuno-Histoquímica , Cariotipagem , Camundongos , Especificidade de Órgãos , Fenótipo , Análise de Sobrevida , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Hereditary cases of breast and ovarian cancer are often attributed to germ-line mutations of the BRCA1 tumor suppressor gene. Although BRCA1 is involved in diverse cellular processes, its role in the maintenance of genomic integrity may be a key component of its tumor suppression activity. The protein encoded by BRCA1 interacts in vivo with the related BARD1 protein to form a heterodimeric complex that acts as a ubiquitin E3 ligase. Because the enzymatic activity of the BRCA1/BARD1 heterodimer is conserved over a broad phylogenetic range, it is thought to be critical for the central functions of BRCA1. To test this hypothesis, we have generated isogenic clones of embryonic stem cells that do or do not express an enzymatically proficient Brca1 polypeptide. Surprisingly, cells lacking the ubiquitin ligase activity of BRCA1 are viable and do not accumulate spontaneous cytogenetic rearrangements. Gene targeting efficiencies are modestly reduced in these cells, and chromosomal rearrangements arise at elevated rates in response to genotoxic stress. Nonetheless, cells lacking Brca1 enzymatic activity are not hypersensitive to the DNA cross-linking agent mitomycin C. They also form Rad51 focus in response to ionizing radiation and repair chromosome breaks by homologous recombination at wild-type levels. These results indicate that key aspects of BRCA1 function in genome maintenance, including its role in homology-directed repair of double-strand DNA breaks, do not depend on the E3 ligase activity of BRCA1.
Assuntos
Proteína BRCA1/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Células-Tronco Embrionárias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteína BRCA1/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Aberrações Cromossômicas/induzido quimicamente , Aberrações Cromossômicas/efeitos dos fármacos , Aberrações Cromossômicas/efeitos da radiação , Reagentes de Ligações Cruzadas/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Células-Tronco Embrionárias/patologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Camundongos , Mitomicina/farmacologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Radiação Ionizante , Recombinação Genética/efeitos dos fármacos , Recombinação Genética/genética , Recombinação Genética/efeitos da radiação , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genéticaRESUMO
While GDNF signaling through the Ret receptor is critical for kidney development, its specific role in branching morphogenesis of the epithelial ureteric bud (UB) is unclear. Ret expression defines a population of UB "tip cells" distinct from cells of the tubular "trunks," but how these cells contribute to UB growth is unknown. We have used time-lapse mosaic analysis to investigate normal cell fates within the growing UB and the developmental potential of cells lacking Ret. We found that normal tip cells are bipotential, contributing to both tips and trunks. Cells lacking Ret are specifically excluded from the tips, although they contribute to the trunks, revealing that the tips form and expand by GDNF-driven cell proliferation. Surprisingly, the mutant cells assumed an asymmetric distribution in the UB trunks, suggesting a model of branching in which the epithelium of the tip and the adjacent trunk is remodeled to form new branches.
Assuntos
Células Epiteliais/fisiologia , Morfogênese/fisiologia , Fatores de Crescimento Neural/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/fisiologia , Ureter/citologia , Animais , Linhagem Celular , Proliferação de Células , Embrião de Mamíferos , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica/métodos , Queratinas/metabolismo , Rim/citologia , Rim/embriologia , Rim/metabolismo , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Modelos Biológicos , Técnicas de Cultura de Órgãos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-ret , Receptores Proteína Tirosina Quinases/genética , Células-Tronco/metabolismo , Fatores de Tempo , Ureter/embriologiaRESUMO
Intercellular signaling molecules and their receptors, whose expression must be tightly regulated in time and space, coordinate organogenesis. Regulators of intracellular signaling pathways provide an additional level of control. Here we report that loss of the receptor tyrosine kinase (RTK) antagonist, Sprouty1 (Spry1), causes defects in kidney development in mice. Spry1(-/-) embryos have supernumerary ureteric buds, resulting in the development of multiple ureters and multiplex kidneys. These defects are due to increased sensitivity of the Wolffian duct to GDNF/RET signaling, and reducing Gdnf gene dosage correspondingly rescues the Spry1 null phenotype. We conclude that the function of Spry1 is to modulate GDNF/RET signaling in the Wolffian duct, ensuring that kidney induction is restricted to a single site. These results demonstrate the importance of negative feedback regulation of RTK signaling during kidney induction and suggest that failures in feedback control may underlie some human congenital kidney malformations.
Assuntos
Rim/embriologia , Proteínas de Membrana/fisiologia , Fatores de Crescimento Neural/fisiologia , Fosfoproteínas/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Sequência de Bases , DNA/genética , Indução Embrionária , Retroalimentação , Feminino , Dosagem de Genes , Regulação da Expressão Gênica no Desenvolvimento , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial , Humanos , Rim/anormalidades , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Crescimento Neural/genética , Fenótipo , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-ret , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais , Ureter/anormalidades , Ureter/embriologia , Ductos Mesonéfricos/embriologiaRESUMO
Metastatic spread of cancer is an unfortunate consequence of disease progression, aggressive cancer subtypes, and/or late diagnosis. Brain metastases are particularly devastating, difficult to treat, and confer a poor prognosis. While the precise incidence of brain metastases in the United States remains hard to estimate, it is likely to increase as extracranial therapies continue to become more efficacious in treating cancer. Thus, it is necessary to identify and develop novel therapeutic approaches to treat metastasis at this site. To this end, intracranial injection of cancer cells has become a well-established method in which to model brain metastasis. Previously, the inability to directly measure tumor growth has been a technical hindrance to this model; however, increasing availability and quality of small animal imaging modalities, such as magnetic resonance imaging (MRI), are vastly improving the ability to monitor tumor growth over time and infer changes within the brain during the experimental period. Herein, intracranial injection of murine mammary tumor cells into immunocompetent mice followed by MRI is demonstrated. The presented injection approach utilizes isoflurane anesthesia and a stereotactic setup with a digitally controlled, automated drill and needle injection to enhance precision, and reduce technical error. MRI is measured over time using a 9.4 Tesla instrument in The Ohio State University James Comprehensive Cancer Center Small Animal Imaging Shared Resource. Tumor volume measurements are demonstrated at each time point through use of ImageJ. Overall, this intracranial injection approach allows for precise injection, day-to-day monitoring, and accurate tumor volume measurements, which combined greatly enhance the utility of this model system to test novel hypotheses on the drivers of brain metastases.
Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/secundário , Injeções , Imageamento por Ressonância Magnética , Anestesia , Animais , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Neoplasias da Mama/patologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Camundongos , Técnicas Estereotáxicas , Carga TumoralRESUMO
Heterozygous mutations in the BRCA1 gene predispose women to breast and ovarian cancer, while biallelic BRCA1 mutations are a cause of Fanconi anemia (FA), a rare genetic disorder characterized by developmental abnormalities, early-onset bone marrow failure, increased risk of cancers, and hypersensitivity to DNA-crosslinking agents. BRCA1 is critical for homologous recombination of DNA double-strand breaks (DSB). Through its coiled-coil domain, BRCA1 interacts with an essential partner, PALB2, recruiting BRCA2 and RAD51 to sites of DNA damage. Missense mutations within the coiled-coil domain of BRCA1 (e.g., L1407P) that affect the interaction with PALB2 have been reported in familial breast cancer. We hypothesized that if PALB2 regulates or mediates BRCA1 tumor suppressor function, ablation of the BRCA1-PALB2 interaction may also elicit genomic instability and tumor susceptibility. We generated mice defective for the Brca1-Palb2 interaction (Brca1 L1363P in mice) and established MEF cells from these mice. Brca1 L1363P/L1363P MEF exhibited hypersensitivity to DNA-damaging agents and failed to recruit Rad51 to DSB. Brca1 L1363P/L1363P mice were viable but exhibited various FA symptoms including growth retardation, hyperpigmentation, skeletal abnormalities, and male/female infertility. Furthermore, all Brca1 L1363P/L1363P mice exhibited macrocytosis and died due to bone marrow failure or lymphoblastic lymphoma/leukemia with activating Notch1 mutations. These phenotypes closely recapitulate clinical features observed in patients with FA. Collectively, this model effectively demonstrates the significance of the BRCA1-PALB2 interaction in genome integrity and provides an FA model to investigate hematopoietic stem cells for mechanisms underlying progressive failure of hematopoiesis and associated development of leukemia/lymphoma, and other FA phenotypes. SIGNIFICANCE: A new Brca1 mouse model for Fanconi anemia (FA) complementation group S provides a system in which to study phenotypes observed in human FA patients including bone marrow failure.See related commentary by Her and Bunting, p. 4044.
Assuntos
Neoplasias da Mama , Anemia de Fanconi , Animais , Proteína BRCA1/genética , Dano ao DNA/genética , Anemia de Fanconi/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Feminino , Humanos , Masculino , Camundongos , Fenótipo , Proteínas Supressoras de Tumor/genéticaRESUMO
BACKGROUND: A significant challenge to overcome in pancreatic ductal adenocarcinoma (PDAC) is the profound systemic immunosuppression that renders this disease non-responsive to immunotherapy. Our supporting data provide evidence that CD200, a regulator of myeloid cell activity, is expressed in the PDAC microenvironment. Additionally, myeloid-derived suppressor cells (MDSC) isolated from patients with PDAC express elevated levels of the CD200 receptor (CD200R). Thus, we hypothesize that CD200 expression in the PDAC microenvironment limits responses to immunotherapy by promoting expansion and activity of MDSC. METHODS: Immunofluorescent staining was used to determine expression of CD200 in murine and human PDAC tissue. Flow cytometry was utilized to test for CD200R expression by immune populations in patient blood samples. In vivo antibody blocking of CD200 was conducted in subcutaneous MT-5 tumor-bearing mice and in a genetically engineered PDAC model (KPC-Brca2 mice). Peripheral blood mononuclear cells (PBMC) from patients with PDAC were analyzed by single-cell RNA sequencing. MDSC expansion assays were completed using healthy donor PBMC stimulated with IL-6/GM-CSF in the presence of recombinant CD200 protein. RESULTS: We found expression of CD200 by human pancreatic cell lines (BxPC3, MiaPaca2, and PANC-1) as well as on primary epithelial pancreatic tumor cells and smooth muscle actin+ stromal cells. CD200R expression was found to be elevated on CD11b+CD33+HLA-DRlo/- MDSC immune populations from patients with PDAC (p=0.0106). Higher expression levels of CD200R were observed in CD15+ MDSC compared with CD14+ MDSC (p<0.001). In vivo studies demonstrated that CD200 antibody blockade limited tumor progression in MT-5 subcutaneous tumor-bearing and in KPC-Brca2 mice (p<0.05). The percentage of intratumoral MDSC was significantly reduced in anti-CD200 treated mice compared with controls. Additionally, in vivo blockade of CD200 can also significantly enhance the efficacy of PD-1 checkpoint antibodies compared with single antibody therapies (p<0.05). Single-cell RNA sequencing of PBMC from patients revealed that CD200R+ MDSC expressed genes involved in cytokine signaling and MDSC expansion. Further, in vitro cytokine-driven expansion and the suppressive activity of human MDSC was enhanced when cocultured with recombinant CD200 protein. CONCLUSIONS: These results indicate that CD200 expression in the PDAC microenvironment may regulate MDSC expansion and that targeting CD200 may enhance activity of checkpoint immunotherapy.
Assuntos
Antígenos CD/metabolismo , Carcinoma Ductal Pancreático/imunologia , Terapia de Imunossupressão , Leucócitos Mononucleares/imunologia , Células Supressoras Mieloides/imunologia , Neoplasias Pancreáticas/imunologia , Microambiente Tumoral/imunologia , Animais , Antígenos CD/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Modelos Animais de Doenças , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Camundongos , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias PancreáticasRESUMO
Alterations of the PALB2 tumor suppressor gene have been identified in familial breast, ovarian and pancreatic cancer cases. PALB2 cooperates with BRCA1/2 proteins through physical interaction in initiation of homologous recombination, in maintenance of genome integrity following DNA double-strand breaks. To determine if the role of PALB2 as a linker between BRCA1 and BRCA2 is critical for BRCA1/2-mediated tumor suppression, we generated Palb2 mouse pancreatic cancer models and compared tumor latencies, phenotypes and drug responses with previously generated Brca1/2 pancreatic cancer models. For development of Palb2 pancreatic cancer, we crossed conditional Palb2 null mouse with mice carrying the KrasG12D; p53R270H; Pdx1-Cre (KPC) constructs, and these animals were observed for pancreatic tumor development. Individual deletion of Palb2, Brca1 or Brca2 genes in pancreas per se using Pdx1-Cre was insufficient to cause tumors, but it reduced pancreata size. Concurrent expression of mutant KrasG12D and p53R270H, with tumor suppressor inactivated strains in Palb2-KPC, Brca1-KPC or Brca2-KPC, accelerated pancreatic ductal adenocarcinoma (PDAC) development. Moreover, most Brca1-KPC and some Palb2-KPC animals developed mucinous cystic neoplasms with PDAC, while Brca2-KPC and KPC animals did not. 26% of Palb2-KPC mice developed MCNs in pancreata, which resemble closely the Brca1 deficient tumors. However, the remaining 74% of Palb2-KPC animals developed PDACs without any cysts like Brca2 deficient tumors. In addition, the number of ADM lesions and immune cells infiltrations (CD3+ and F/480+) were significantly increased in Brca1-KPC tumors, but not in Brca2-KPC tumors. Interestingly, the level of ADM lesions and infiltration of CD3+ or F/480+ cells in Palb2-KPC tumors were intermediate between Brca1-KPC and Brca2-KPC tumors. As expected, disruption of Palb2 and Brca1/2 sensitized tumor cells to DNA damaging agents in vitro and in vivo. Altogether, Palb2-KPC PDAC exhibited features observed in both Brca1-KPC and Brca2-KPC tumors, which could be due to its role, as a linker between Brca1 and Brca2.
Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Carcinoma/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Neoplasias Pancreáticas/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma/tratamento farmacológico , Carcinoma/patologia , Modelos Animais de Doenças , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Camundongos , Camundongos Nus , Mutação , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologiaRESUMO
Systems biology perspectives are crucial for understanding the pathophysiology of complex diseases, and therefore hold great promise for the discovery of novel treatment strategies. Drug combinations have been shown to improve durability and reduce resistance to available first-line therapies in a variety of cancers; however, traditional drug discovery approaches are prohibitively cost and labor-intensive to evaluate large-scale matrices of potential drug combinations. Computational methods are needed to efficiently model complex interactions of drug target pathways and identify mechanisms underlying drug combination synergy. In this study, we employ a computational approach, SynGeNet (Synergy from Gene expression and Network mining), which integrates transcriptomics-based connectivity mapping and network centrality analysis to analyze disease networks and predict drug combinations. As an exemplar of a disease in which combination therapies demonstrate efficacy in genomic-specific contexts, we investigate malignant melanoma. We employed SynGeNet to generate drug combination predictions for each of the four major genomic subtypes of melanoma (BRAF, NRAS, NF1, and triple wild type) using publicly available gene expression and mutation data. We validated synergistic drug combinations predicted by our method across all genomic subtypes using results from a high-throughput drug screening study across. Finally, we prospectively validated the drug combination for BRAF-mutant melanoma that was top ranked by our approach, vemurafenib (BRAF inhibitor) + tretinoin (retinoic acid receptor agonist), using both in vitro and in vivo models of BRAF-mutant melanoma and RNA-sequencing analysis of drug-treated melanoma cells to validate the predicted mechanisms. Our approach is applicable to a wide range of disease domains, and, importantly, can model disease-relevant protein subnetworks in precision medicine contexts.
Assuntos
Biologia Computacional/métodos , Descoberta de Drogas/métodos , Biologia de Sistemas/métodos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Bases de Dados Genéticas , Combinação de Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Genômica , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Camundongos , Mutação , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Melanoma Maligno CutâneoRESUMO
Dedifferentiated liposarcoma (DDLPS) is a highly morbid mesenchymal tumor characterized and driven by genomic amplification of the MDM2 gene. Direct inhibition of MDM2 has shown promise pre-clinically, but has yet to be validated in clinical trials. Early in vitro studies have demonstrated that pan-histone deacetylase (HDAC) inhibition may have anti-MDM2 effects. Here we present in silico, in vitro, and mouse xenograft studies that suggest that specifically targeting HDAC2 reduces MDM2 expression and has anti-tumor affects in DDLPS. Two independent datasets, The Cancer Genome Atlas (TCGA; n = 58) and the Memorial Sloan-Kettering Cancer Center Dataset (MSKCC; n = 63), were used to identify the co-expression between class I HDACs and MDM2, and their clinical impact. HDAC2 was highly co-expressed with MDM2 (TCGA: Spearman's coefficient = 0.29, p = 0.03; MSKCC: Spearman's coefficient = 0.57, p < 0.001). As both a continuous and dichotomous predictor, elevated HDAC2 expression was associated with worsened disease-free survival in the TCGA (Continuous: Hazard-ratio (HR) 1.7; 95% Confidence Interval (95%CI) 0.97-2.9; p = 0.06; Dichotomous: HR 7.1, 95%CI 2.5-19.8, p < 0.001) and distant recurrence-free survival in the MSKCC (Continuous: HR 2.2; 95%CI 1.1-4.8; p = 0.04; Dichotomous: HR 2.8, 95%CI 1.2-6.4, p = 0.02). In vitro, treatment of DDLPS cell lines with the HDAC inhibitors MI-192 (HDAC2/3 inhibitor) or romidepsin (HDAC1/2 inhibitor) reduced MDM2 expression and induced apoptosis. In a murine DDLPS xenograft model, romidepsin reduced tumor growth and lowered tumor MDM2 expression. RNA-sequencing of romidepsin treated mouse tumors demonstrated markers of TP53 reactivation. Taken together, our data supports the hypothesis that targeting HDAC2 may represent a potential strategy to modulate MDM2 expression in DDLPS.
RESUMO
Cachexia is a wasting syndrome characterized by pronounced skeletal muscle loss. In cancer, cachexia is associated with increased morbidity and mortality and decreased treatment tolerance. Although advances have been made in understanding the mechanisms of cachexia, translating these advances to the clinic has been challenging. One reason for this shortcoming may be the current animal models, which fail to fully recapitulate the etiology of human cancer-induced tissue wasting. Because pancreatic ductal adenocarcinoma (PDA) presents with a high incidence of cachexia, we engineered a mouse model of PDA that we named KPP. KPP mice, similar to PDA patients, progressively lose skeletal and adipose mass as a consequence of their tumors. In addition, KPP muscles exhibit a similar gene ontology as cachectic patients. We envision that the KPP model will be a useful resource for advancing our mechanistic understanding and ability to treat cancer cachexia.