Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 618(7966): 799-807, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316670

RESUMO

Plants deploy receptor-like kinases and nucleotide-binding leucine-rich repeat receptors to confer host plant resistance (HPR) to herbivores1. These gene-for-gene interactions between insects and their hosts have been proposed for more than 50 years2. However, the molecular and cellular mechanisms that underlie HPR have been elusive, as the identity and sensing mechanisms of insect avirulence effectors have remained unknown. Here we identify an insect salivary protein perceived by a plant immune receptor. The BPH14-interacting salivary protein (BISP) from the brown planthopper (Nilaparvata lugens Stål) is secreted into rice (Oryza sativa) during feeding. In susceptible plants, BISP targets O. satvia RLCK185 (OsRLCK185; hereafter Os is used to denote O. satvia-related proteins or genes) to suppress basal defences. In resistant plants, the nucleotide-binding leucine-rich repeat receptor BPH14 directly binds BISP to activate HPR. Constitutive activation of Bph14-mediated immunity is detrimental to plant growth and productivity. The fine-tuning of Bph14-mediated HPR is achieved through direct binding of BISP and BPH14 to the selective autophagy cargo receptor OsNBR1, which delivers BISP to OsATG8 for degradation. Autophagy therefore controls BISP levels. In Bph14 plants, autophagy restores cellular homeostasis by downregulating HPR when feeding by brown planthoppers ceases. We identify an insect saliva protein sensed by a plant immune receptor and discover a three-way interaction system that offers opportunities for developing high-yield, insect-resistant crops.


Assuntos
Hemípteros , Proteínas de Insetos , Oryza , Defesa das Plantas contra Herbivoria , Proteínas de Plantas , Animais , Hemípteros/imunologia , Hemípteros/fisiologia , Leucina/metabolismo , Nucleotídeos/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/imunologia , Oryza/metabolismo , Oryza/fisiologia , Defesa das Plantas contra Herbivoria/imunologia , Defesa das Plantas contra Herbivoria/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Insetos/metabolismo , Autofagia
2.
Front Plant Sci ; 13: 843227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498688

RESUMO

The brown planthopper (Nilaparvata lugens Stål, BPH) is one of the most devastating insect pests of rice (Oryza sativa L.), but BPH populations have varying degrees of virulence to rice varieties carrying different resistance genes. To help efforts to characterize these variations we applied bulked segregant RNA sequencing (BSR-seq) to identify differentially expressed genes (DEGs) and genetic loci associated with BPH virulence to YHY15 rice plants carrying the resistance gene Bph15. BPHs that are highly virulent or avirulent to these plants were selected from an F2 population to form two contrasting bulks, and BSR-seq identified 751 DEGs between the bulks. Genes associated with carbohydrate, amino acid and nucleotide metabolism, the endocrine system, and signal transduction were upregulated in the avirulent insects when they fed on these plants. The results also indicated that shifts in lipid metabolism and digestive system pathways were crucial for the virulent BPHs' adaptation to the resistant rice. We identified 24 single-nucleotide polymorphisms (SNPs) in 21 genes linked with BPH virulence. Possible roles of genes apparently linked to BPH virulence are discussed. Our results provide potentially valuable information for further studies of BPH virulence mechanisms and development of robust control strategies.

3.
Sci China Life Sci ; 64(9): 1502-1521, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33165813

RESUMO

The brown planthopper (BPH) (Nilaparvata lugens Stål) is a highly destructive pest that seriously damages rice (Oryza sativa L.) and causes severe yield losses. To better understand the physiological and metabolic mechanisms through which BPHs respond to resistant rice, we combined mass-spectrometry-based lipidomics with transcriptomic analysis and gene knockdown techniques to compare the lipidomes of BPHs feeding on either of the two resistant (NIL-Bph6 and NIL-Bph9) plants or a wild-type, BPH susceptible (9311) plant. Insects that were fed on resistant rice transformed triglyceride (TG) to phosphatidylcholine (PC) and digalactosyldiacylglycerol (DGDG), with these lipid classes showing significant alterations in fatty acid composition. Moreover, the insects that were fed on resistant rice were characterized by prominent expression changes in genes involved in lipid metabolism processes. Knockdown of the NlBmm gene, which encodes a lipase that regulates the mobilization of lipid reserves, significantly increased TG content and feeding performance of BPHs on resistant plants relative to dsGFP-injected BPHs. Our study provides the first detailed description of lipid changes in BPHs fed on resistant and susceptible rice genotypes. Results from BPHs fed on resistant rice plants reveal that these insects can accelerate TG mobilization to provide energy for cell proliferation, body maintenance, growth and oviposition.


Assuntos
Hemípteros/genética , Hemípteros/metabolismo , Herbivoria , Lipidômica , Lipólise , Oryza/genética , Oryza/metabolismo , Animais
4.
Mol Plant ; 14(10): 1714-1732, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34246801

RESUMO

Phloem-feeding insects cause massive losses in agriculture and horticulture. Host plant resistance to phloem-feeding insects is often mediated by changes in phloem composition, which deter insect settling and feeding and decrease viability. Here, we report that rice plant resistance to the phloem-feeding brown planthopper (BPH) is associated with fortification of the sclerenchyma tissue, which is located just beneath the epidermis and a cell layer or two away from the vascular bundle in the rice leaf sheath. We found that BPHs prefer to feed on the smooth and soft region on the surface of rice leaf sheaths called the long-cell block. We identified Bph30 as a rice BPH resistance gene that prevents BPH stylets from reaching the phloem due to the fortified sclerenchyma. Bph30 is strongly expressed in sclerenchyma cells and enhances cellulose and hemicellulose synthesis, making the cell walls stiffer and sclerenchyma thicker. The structurally fortified sclerenchyma is a formidable barrier preventing BPH stylets from penetrating the leaf sheath tissues and arriving at the phloem to feed. Bph30 belongs to a novel gene family, encoding a protein with two leucine-rich domains. Another member of the family, Bph40, also conferred resistance to BPH. Collectively, the fortified sclerenchyma-mediated resistance mechanism revealed in this study expands our understanding of plant-insect interactions and opens a new path for controlling planthoppers in rice.


Assuntos
Genes de Plantas , Hemípteros/fisiologia , Oryza/genética , Oryza/parasitologia , Folhas de Planta/parasitologia , Animais , Resistência à Doença/genética , Feminino , Oryza/imunologia , Células Vegetais/parasitologia , Células Vegetais/fisiologia
5.
Front Plant Sci ; 11: 571280, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973857

RESUMO

The brown planthopper (BPH), Nilaparvata lugens Stål, is one of the major pests of rice. It uses its stylet to penetrate rice phloem, feeding on rice sap and causing direct damage to rice or even plant death. During the feeding process, BPHs secrete saliva into plant tissues, which plays crucial roles in the plant-insect interactions. However, little is known about how the salivary proteins secreted by BPH affect feeding ability and how they induce plant immune responses. Here, we identified an N. lugens Salivary Protein 1 (NlSP1) by screening salivary proteome and characterized its functions in BPH and plants. NlSP1 induces cell death, H2O2 accumulation, the expression of defense-related genes, and callose deposition in planta. The active region of NlSP1 that induces plant cell death is located in its N-terminal region. Inhibition of NlSP1 expression in BPHs reduced their feeding ability and had a lethal effect on them. Most importantly, we demonstrated that NlSP1 was able to be secreted into rice plant during feeding process and form a complex with certain interacting partner of rice. These results provide a detailed characterization of a salivary protein from BPHs and offers new insights into our understanding of rice-BPH interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA