Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36144508

RESUMO

1,3,3-Trinitroazetidine (TNAZ) has good thermal stability and low shock sensitivity, among other properties, and it has broad prospects in insensitive ammunition applications. In this study, a molecular dynamics calculation based on the ReaxFF-lg force field and multiscale shock technique (MSST) was used to simulate the shock-induced chemical reaction of TNAZ with different shock wave directions. The results showed that the shock sensitivity of TNAZ was in the order of [100] > [010] > [001]. There were significant differences in molecular arrangements in different shock directions, which affected the reaction rate and reaction path in different directions. The molecular arrangement in the [010] and [001] directions formed a "buffer" effect. The formation and cleavage of bonds, formation of small molecules and growth of clusters were analyzed to show the effect of the "buffer". The polymerization reactions in the [010] and [001] directions appeared later than that in the [100] direction, and the cluster growth in the [010] and [001] directions was slower than that in the [100] direction. In different shock loading directions, the formation and cleavage mechanisms of the N-O bonds of the TNAZ molecules were different, which resulted in differences in the initial reaction path and reaction rate in the three directions


Assuntos
Azetidinas , Simulação de Dinâmica Molecular , Anisotropia , Azetidinas/química , Nitrocompostos/química
2.
ACS Omega ; 8(21): 18851-18862, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37273601

RESUMO

The addition of binders to energetic materials is known to complicate the thermal decomposition process of such materials. To assess this effect, the present work studied the thermal decomposition of cyclotrimethylene trinitramine (RDX)/hydroxy-terminated polybutadiene (HTPB) mixtures and of pure RDX over the temperature range of 2000-3500 K by combining the classical reaction and first-principles molecular dynamics methods. The incorporation of HTPB as a binder was found to significantly reduce the decomposition rate of RDX. At 3500 K, the decay rate constant of RDX in the RDX/HTPB system is 2.0141 × 1012 s-1, while it is 2.7723 × 1012 s-1 in the pure RDX system. However, the binder HTPB had little effect on the initial decomposition mechanism, which involved the rupture of N-NO2 bonds to produce NO2. The HTPB was predicted to undergo dehydrogenation and chain breaking. The free H resulting from these processes was predicted to react with low-molecular-weight intermediates generated by the RDX, resulting in greater equilibrium quantities of the final products H2O and H2 being obtained from the mixed system compared with pure RDX. HTPB-chain fragments were also found to combine with the primary RDX decomposition product NO2 to inhibit the formation of N2 and CO2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA