Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Assunto principal
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 416, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37684598

RESUMO

PURPOSE: Beetroot is a model crop for studying root competition in intercropping systems because its red-coloured roots facilitate non-destructive visual discrimination with other root systems of intercropped plants. However, beetroot also has white roots, which could alter how root competition is interpreted. Here we investigated the quantity of white versus red roots in beetroot to quantify the effect of this phenomenon. METHODS: Beetroot was mono-cropped or inter-cropped with white cabbage in a field trial. The distribution of beetroot roots was recorded to 2.5 m soil depth on three dates following the minirhizotron method. Roots in each 0.5 m soil layer were counted and categorised into groups based on colour (white roots, coloured roots, and white roots traced back to be coloured) to investigate the influence of white roots on accuracy of root registration. A pot experiment was conducted with three cultivars to verify if white roots are a general characteristic of beetroot. RESULTS: White roots in mono-cropped beetroot represented 2.5-4.8% of total roots, on average, across the rooted soil profile. However, white roots represented 6.9% and 11.6% of total roots in the deepest soil layer during August and October, respectively. White roots caused mono-cropped beetroot roots to be underestimated by 1-22% based on root colour discrimination. However, tracing white roots backwards and forwards to coloured parts of roots reduced underestimates to 0.5-15%. Intercropping did not influence the traceability of white roots compared to monocropping. The highest occurrence of white roots appeared during the early growth period and in the deepest soil layers, indicating a linkage to younger roots or higher root proliferation rates. CONCLUSION: Beetroot represents a model crop for visual studies linking eco-physiology and root proliferation. The white roots of beetroot must be incorporated by studies of root competition in intercropping systems that use colour as a criterion.


Assuntos
Solo , Verduras , Cor
2.
Front Plant Sci ; 13: 952910, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237499

RESUMO

Crop diversification in spatial and temporal patterns can optimize the synchronization of nutrients plant demand and availability in soils, as plant diversity and soil microbial communities are the main drivers of biogeochemical C and nutrient cycling. The introduction of multi-cropping in organic vegetable production can represent a key strategy to ensure efficient complementation mediated by soil microbiota, including beneficial mycorrhizal fungi. This study shows the effect of the introduction of multi-cropping in five European organic vegetable systems (South-West: Italy; North-West: Denmark and Belgium; North-East: Finland and Latvia) on: (i) soil physicochemical parameters; (ii) soil microbial biomass stoichiometry; (iii) crop root mycorrhization; (iv) bacterial and fungal diversity and composition in crop rhizosphere; (v) relative abundance of selected fungal pathogens species. In each site, three cropping systems were considered: (1) crop 1-monocropping; (2) crop 2-monocropping; (3) crop 1-crop 2-intercropping or strip cropping. Results showed that, just before harvest, multi-cropping can increase soil microbial biomass amount and shape microbial community toward a predominance of some bacteria or fungi phyla, in the function of soil nutrient availability. We mainly observed a selection effect of crop type on rhizosphere microbiota. Particularly, Bacteroidetes and Mortierellomycota relative abundances in rhizosphere soil resulted in suitable ecological indicators of the positive effect of plant diversity in field, the first ones attesting an improved C and P cycles in soil and the second ones a reduced soil pathogens' pressure. Plant diversity also increased the root mycorrhizal colonization between the intercropped crops that, when properly selected, can also reduce the relative abundance of potential soil-borne pathogens, with a positive effect on crop productivity in long term.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA