Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 130(22): 3839-3850, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29021346

RESUMO

Our previous studies have shown that the HECT E3 ubiquitin ligase NEDD4 interacts with LC3 and is required for starvation and rapamycin-induced activation of autophagy. Here, we report that NEDD4 directly binds to SQSTM1 via its HECT domain and polyubiquitylates SQSTM1. This ubiquitylation is through K63 conjugation and is not involved in proteasomal degradation. Mutational analysis indicates that NEDD4 interacts with and ubiquitylates the PB1 domain of SQSTM1. Depletion of NEDD4 or overexpression of the ligase-defective mutant of NEDD4 induced accumulation of aberrant enlarged SQSTM1-positive inclusion bodies that are co-localized with the endoplasmic reticulum (ER) marker CANX, suggesting that the ubiquitylation functions in the SQSTM1-mediated biogenic process in inclusion body autophagosomes. Taken together, our studies show that NEDD4 is an autophagic E3 ubiquitin ligase that ubiquitylates SQSTM1, facilitating SQSTM1-mediated inclusion body autophagy.


Assuntos
Autofagia , Ubiquitina-Proteína Ligases Nedd4/fisiologia , Proteína Sequestossoma-1/metabolismo , Ubiquitinação , Células A549 , Células HEK293 , Humanos , Corpos de Inclusão/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Proteínas/metabolismo , Proteólise
2.
Cancer Cell Int ; 19: 74, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30976198

RESUMO

BACKGROUND: Gastric cardia adenocarcinoma (GCA) is an aggressive subtype of gastric cancer with a high metastatic rate. However, the metastatic biomarker of GCA has not been established. METHODS: To search for the biomarker for GCA metastasis, we here examined expression of the Hippo signaling effector WWTR1 (WW domain containing transcription regulator 1, commonly listed as TAZ) in tumor tissue samples from 214 GCA cases using the tissue microarray assay (TMA), and statistically analyzed association of the WWTR1 expression with metastasis-related pathological outcomes and cumulative survival of the GCA patients. Furthermore, shRNA knockdown was used to determine the role of WWTR1 in promoting cell migration in gastric cancer cells. RESULTS: The results have shown that WWTR1 is overexpressed in 66.4% of the GCA tumor samples. Expression of WWTR1 has a significant inverse correlation with cumulative survival of GCA patients (p < 0.01). WWTR1 positive patients had a mean survival of 56.9 ± 4.4 months, comparing to WWTR1 negative mean survival of 77.3 ± 5.9 months. More importantly, expression of WWTR1 significantly associated with tumor invasion and metastasis (in T stage, p = 0.031; N stage, p < 0.01; and TNM stage, p < 0.001). Furthermore, knockdown of WWTR1 impaired migration of gastric cancer AGS cells. CONCLUSIONS: Our studies have identified WWTR1 as a metastatic biomarker of GCA for poor prognosis, defined a role of WWTR1 in driving metastasis of gastric cancer, and suggested WWTR1 as a potential target for anti-metastatic therapy of GCA.

3.
Mol Cancer ; 17(1): 24, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29455656

RESUMO

BACKGROUND: EGFR-dependent cell migration plays an important role in lung cancer progression. Our previous study observed that the HECT E3 ubiquitin ligase NEDD4 is significantly correlated with tumor metastasis and required for migration and invasion signaling of EGFR in gastric cancer cells. However, how NEDD4 promotes the EGFR-dependent lung cancer cell migration is unknown. This study is to elucidate the mechanism by which NEDD4 mediates the EGFR lung cancer migration signaling. METHODS: Lentiviral vector-loaded NEDD4 shRNA was used to deplete endogenous NEDD4 in lung cancer cell lines. Effects of the NEDD4 knockdown on the EGFR-dependent or independent lung cancer cell migration were determined using the wound-healing and transwell assays. Association of NEDD4 with activated EGFR was assayed by co-immunoprecipitation. Co-expression of NEDD4 with EGFR or PTEN was determined by immunohistochemical (IHC) staining in 63 lung adenocarcinoma tissue samples. Effects of NEDD4 ectopic expression or knockdown on PTEN ubiquitination and down-regulation, AKT activation and lysosomal secretion were examined using the GST-Uba pulldown assay, immunoblotting, immunofluorescent staining and a human cathepsin B ELISA assay respectively. The specific cathepsin B inhibitor CA-074Me was used for assessing the role of cathepsin B in lung cancer cell migration. RESULTS: Knockdown of NEDD4 significantly reduced EGF-stimulated cell migration in non-small cell lung carcinoma (NSCLC) cells. Co-immunoprecipitation assay found that NEDD4 is associated with EGFR complex upon EGF stimulation, and IHC staining indicates that NEDD4 is co-expressed with EGFR in lung adenocarcinoma tumor tissues, suggesting that NEDD4 might mediate lung cancer cell migration by interaction with the EGFR signaling complex. Interestingly, NEDD4 promotes the EGF-induced cathepsin B secretion, possibly through lysosomal exocytosis, as overexpression of the ligase-dead mutant of NEDD4 impedes lysosomal secretion, and knockdown of NEDD4 significantly reduced extracellular amount of cathepsin B induced by EGF. Consistent with the role of NEDD4, cathepsin B is pivotal for both basal and the EGF-stimulated lung cancer cell migration. Our studies propose a novel mechanism underlying the EGFR-promoted lung cancer cell migration that is mediated by NEDD4 through regulation of cathepsin B secretion. CONCLUSION: NEDD4 mediates the EGFR lung cancer cell migration signaling through promoting lysosomal secretion of cathepsin B.


Assuntos
Neoplasias Pulmonares/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Transdução de Sinais , Catepsina B/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/genética , Lisossomos/metabolismo , Modelos Biológicos , Ubiquitina-Proteína Ligases Nedd4/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo
4.
Cancer Cell Int ; 16: 25, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27034618

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) is an important oncogenic protein in multiple types of cancer. Endocytosis and degradation of epidermal growth factor receptor (EGFR) are two key steps for down-regulation of cell surface level of EGFR and modulation of EGFR signaling. Stress conditions induce ligand-independent endocytosis and degradation of EGFR. However, it is not clear whether stress-induced endocytosis and degradation are consequential or two independent events. METHODS: Endocytosis and degradation of EGFR in response to stress treatment and effects of the p38 inhibitor, the Caspase-3 inhibitor and the proteasomal inhibitor in cervical cancer HeLa cells were determined using immunoblotting and immunofluorescent staining assays. RESULTS: Stress conditions, such as protein biosynthesis inhibition, UV light irradiation, and hyper-osmosis, induced both ligand-independent endocytosis and degradation of EGFR. Stress-induced endocytosis of EGFR relies on p38 kinase activity, while stress-induced degradation of EGFR is catalyzed by Caspase-3 activity. Inhibiting p38 kinase impairs only the endocytosis but not the degradation, while inhibiting Caspase-3 results in the opposite effect to inhibiting p38. Furthermore, proteasomal activity is required for stress-induced degradation of EGFR and cell death, but not for endocytosis. CONCLUSIONS: The results indicate that stress-induced endocytosis and degradation are two independent events and suggest stress signaling may utilize a double-secure mechanism to down-regulate cell surface EGFR in cancer cells.

5.
Cancer Cell Int ; 15: 27, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25745361

RESUMO

PDZ binding-kinase (PBK) (also named T-lymphokine-activated killer cell-originated protein kinase (TOPK)), a serine/threonine kinase, is tightly controlled in normal tissues but elevated in many tumors, and functions in tumorigenesis and metastasis. However, the signaling that regulates expression of PBK in cancer cells remains elusive. Here we show that atorvastatin (Lipitor), an inhibitor of hydroxymethylglutaryl co-enzyme A (HMG-CoA) reductase that is a rate-limiting enzyme of mevalonate pathway, down-regulates expression of PBK by impairing protein geranylgeranylation. The shRNA knockdown demonstrated that Yes-associated protein (YAP) mediates geranylgeranylation-regulated expression of PBK. Importantly, atorvastatin or the geranylgeranyltransferase I inhibitor GGTI-298 inhibited breast cancer cell proliferation through inactivation of YAP signaling and down-regulation of PBK. These findings have defined a new signaling pathway that regulated expression of PBK and identified PBK as a downstream target of the Hippo-YAP signaling, uncoverd a mechanism underlying the anti-cancer effect by inhibition of mevalonate pathway and geranylgeranylation, and provided a potential target for breast cancer targeted therapy.

6.
Reprod Fertil Dev ; 27(2): 419-26, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24384042

RESUMO

Decreasing oocyte competence with maternal aging is a major factor in mammalian infertility. One of the factors contributing to this infertility is changes to chromatin modifications, such as histone acetylation in old MII stage oocytes. Recent studies indicate that changes in histone acetylation at MII arise at the germinal vesicle (GV) stage. We hypothesised that histone methylation could also change in old GV oocytes. To test this hypothesis, we examined mono-, di- and trimethylation of histone H3 lysine 4 (H3K4 me1, me2 and me3, respectively) in young and older oocytes from 6-8- and 42-44-week-old mice, respectively. We found that H3K4 me2 and me3 decreased in older compared with young GV oocytes (100% vs. 81% and 100% vs. 87%, respectively; P<0.05). H3K4 me2 later increased in older MII oocytes (21% vs. 56%; P<0.05). We also examined the expression of genes encoding the H3K4 demethylases lysine (K)-specific demethylase 1A (Kdm1a) and retinol binding protein 2 (Rbp2). Expression of Kdm1a increased at both the mRNA and protein levels in older GV oocytes, but decreased in older MII oocytes (P<0.05), and was negatively correlated with H3K4 me2 levels. Conversely, expression of Rbp2 mRNA and protein decreased in older GV oocytes (P<0.05), and this was not correlated with H3K4 me3 levels. Finally, we showed that inhibition of Kdm1a of older oocytes at the GV stage restored levels of H3K4 me2 at the MII stage to those seen in 'young' oocytes (41% vs. 38%; P>0.05). These results suggest that changes in expression of H3K4 me2 and Kdm1a in older GV oocytes may represent a molecular mechanism underlying human infertility caused by aging.


Assuntos
Envelhecimento/fisiologia , Núcleo Celular/metabolismo , Metilação de DNA/fisiologia , Histonas/metabolismo , Infertilidade Feminina/etiologia , Oócitos/metabolismo , Animais , Primers do DNA/genética , Feminino , Histona Desmetilases/metabolismo , Imuno-Histoquímica , Técnicas de Maturação in Vitro de Oócitos/métodos , Camundongos , Microscopia de Fluorescência , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Celulares de Ligação ao Retinol/metabolismo , Tranilcipromina
7.
Cell Tissue Res ; 358(3): 875-83, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25255718

RESUMO

Histone H3 lysine 4 methylation (H3K4me) is an epigenetic modification associated with gene activation and is dynamically regulated by histone methylases and demethylases. To date, the expression patterns of H3K4me and its demethylases in the developing testis remain unclear. The present study was designed to detect the expression of H3K4me1/2/3 and its demethylases LSD1, RBP2 and SMCX in 21-, 40- and 60-day-old mouse testes by using immunohistochemistry, quantitative real-time polymerase chain reaction (PCR) and Western blot. The immunohistochemical results demonstrated that the expression patterns of the same protein were similar in testes at different ages and that the positive staining cell types were mainly Leydig cells, type A and B spermatogonia, leptotene spermatocytes and spermatids for H3K4me1/2/3, Leydig cells, type A spermatogonia, zygotene and pachytene spermatocytes, spermatids, and Sertoli cells for LSD1 and type A and B spermatogonia for RBP2. Immunostaining for SMCX was not detected in testes. Quantitative real-time PCR and Western blot showed that the amounts of LSD1, RPB2 and SMCX mRNA and protein were age-dependent, were significantly reduced with increasing age and exhibited a negative correlation with the protein levels of H3K4me1/2/3. Thus, H3K4me, which is modified by its demethylases, probably plays a role in male spermatogenesis and testis development.


Assuntos
Histona Desmetilases/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Animais , Western Blotting , Regulação Enzimológica da Expressão Gênica , Histona Desmetilases/genética , Imuno-Histoquímica , Masculino , Metilação , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Testículo/citologia , Testículo/enzimologia
8.
Nanotechnology ; 25(31): 315702, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25036467

RESUMO

Carbon quantum dots (CDs) are promising nanomaterials in biomedical, photocatalytical and photoelectronic applications. However, determining how to explore an ideal precursor for a renewable carbon resource is still an interesting challenge. Here, for the first time, we report that renewable wastes of bagasse as a new precursor were prepared for fluorescent CDs by a hydrothermal carbonization (HTC) process. The characterization results show that such bagasse-derived CDs are monodispersed, contain quasi spherical particles with a diameter of about 1.8 nm and exhibit favorable photoluminescence properties, super-high photostability and good dispersibility in water. Most importantly, bagasse-derived CDs have good biocompatibility and can be easily and quickly internalized by living cancer cells; they can also be used for multicolour biolabeling and bioimaging in cancer cells. It is suggested that bagasse-derived CDs might have potential applications in biomedical and photoelectronic fields.


Assuntos
Carbono/química , Celulose/química , Corantes Fluorescentes , Pontos Quânticos/química , Linhagem Celular Tumoral , Humanos , Microscopia de Fluorescência , Neoplasias/patologia , Pontos Quânticos/toxicidade , Pontos Quânticos/ultraestrutura
9.
Exp Cell Res ; 319(12): 1714-1723, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23684856

RESUMO

Previous studies suggest that ING4, a novel member of ING (inhibitor of growth) family, can inhibit brain tumor growth. However, whether autophagy is involved in ING4-induced cell death still remains unknown. In this study, we found that in addition to apoptosis, autophagy also contributed to cell death induced by ING4. Autophagy levels were elevated following the exposure to Ad-ING4, including enhanced fluorescence intensity of monodansylcadervarine (MDC), a specific in vivo marker for autophagic vacuoles, and increased expression levels of the LC3-II and Beclin-1, wheras the autophagic levels were attenuated following the pretreatment of 3-MA, the inhibitor of autophagy, which significantly decreased the Ad-ING4-induced cell death compared with caspase inhibitor zVAD. Furthermore, ING4 also induced mitochondrial dysfunction, such as mitophagy, collapse of mitochondrial membrane potential and the intracellular ROS, which indicated that mitochondria might be associated with the process of autophagic cell death of glioma cells. Finally, the relationship among Bax, Bcl-2, Beclin-1 and caspase family proteins levels were analyzed in glioma cells U251MG and LN229 infected with Ad-ING4 or Ad-lacZ. It is suggested that both autophagy and apoptosis could contribute to ING4-induced glioma cell death, and mitochondria might play an important role in this process. Our findings reveal novel aspects of the autophagy in glioma cells that underlie the cytotoxic action of ING4, possibly providing new insights in the development of combinatorial therapies for gliomas.


Assuntos
Apoptose , Autofagia , Neoplasias Encefálicas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Glioma/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Neoplasias Encefálicas/patologia , Inibidores de Caspase/farmacologia , Caspases/metabolismo , Linhagem Celular Tumoral , Glioma/patologia , Humanos , Potencial da Membrana Mitocondrial , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Mitofagia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vacúolos/metabolismo , Proteína X Associada a bcl-2/metabolismo
10.
Reprod Biol ; 24(2): 100889, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733657

RESUMO

Mitophagy, the cellular process that removes damaged mitochondria, plays a crucial role in maintaining normal cell functions. It is deeply involved in the entire process of follicle development and is associated with various ovarian diseases. This review aims to provide a comprehensive overview of mitophagy regulation, emphasizing its role at different stages of follicular development. Additionally, the study illuminates the relationship between mitophagy and ovarian diseases, including ovary aging (OA), primary ovarian insufficiency (POI), and polycystic ovary syndrome (PCOS). A detailed understanding of mitophagy could reveal valuable insights and novel strategies for managing female ovarian reproductive health.


Assuntos
Mitofagia , Folículo Ovariano , Mitofagia/fisiologia , Feminino , Folículo Ovariano/fisiologia , Humanos , Animais , Mitocôndrias/fisiologia , Mitocôndrias/metabolismo , Insuficiência Ovariana Primária
11.
Oncol Lett ; 27(6): 278, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38699661

RESUMO

Nuclear receptor coactivator 7 (NCOA7) is an estrogen receptor binding protein. Its role in breast cancer progression has so far remained elusive. The present study aimed to determine the expression levels of NCOA7 in breast tumor samples and confirmed its potential utility as a breast cancer prognostic biomarker. The expression of NCOA7 was detected by immunohistochemical staining in 241 breast cancer tumor samples and 163 adjacent normal tissue samples. The association of NCOA7 expression with the clinicopathological characteristics and overall survival were statistically analyzed. Cell proliferation was determined by Cell Counting Kit-8 and colony-formation assays. Cell migration was detected using wound-healing and Transwell assays. NCOA7 was positively expressed in 44% of breast tumor tissues. The expression of NCOA7 was positively associated with tumor size (T-stage; P=0.005) and lymph node metastasis (N-stage; P=0.008). Additional statistical analysis indicated that the expression of NCOA7 was associated with patient age, tumor size and lymph node metastasis in patients with triple-negative breast cancer (TNBC) compared with that in patients with non-TNBC. The overall survival of patients with NCOA7-positive breast cancer was significantly lower than that of patients with NCOA7-negative breast cancer (P=0.006). Among the patients with lymph node metastasis, the overall survival was reversely associated with the expression of NCOA7 (P=0.042). Furthermore, knockdown of NCOA7 expression in breast cancer T47D and MCF7 cells significantly inhibited both cell proliferation and migration, suggesting that this protein may exert a role in driving breast cancer progression. Taken together, these results indicate that the expression of NCOA7 is associated with poor prognosis of breast cancer and suggest that this protein may be a driver for metastasis and a potential therapeutic target for advanced breast cancer.

12.
Cancer Cell Int ; 13(1): 119, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24305593

RESUMO

The initiation and progression of various solid tumors, including pancreatic carcinoma, are driven by a population of cells with stem cell properties, namely cancer stem cells (CSCs). Like their normal counterparts, CSCs are also believed to rely on their own microenvironment termed niches to sustain the population. Hypoxia-inducible factor-1α (HIF-1α) is a major actor in the cell survival response to hypoxia. Recently, several researchers proposed that non-stem cancer cells can convert to stem-like cells to maintain equilibrium. The present study focuses on whether non-stem pancreatic cancer cells can convert to stem-like cells and the role of HIF-1α and autophagy in modulating this conversation. The non-stem pancreatic cancer cells and pancreatic cancer stem-like cells were separated by magnetic sorting column. Intermittent hypoxia enhanced stem-like properties of non-stem pancreatic cancer cells and stimulated the levels of HIF-1α, LC3-II and Beclin. Enhanced autophagy was associated with the elevated level of HIF-1α. The conversation of non-stem pancreatic cancer cells into pancreatic cancer stem-like cells was induced by HIF-1α and autophagy. This novel finding may indicate the specific role of HIF-1α and autophagy in promoting the dynamic equilibrium between CSCs and non-CSCs. Also, it emphasizes the importance of developing therapeutic strategies targeting cancer stem cells as well as the microenvironmental influence on the tumor.

13.
Heliyon ; 9(3): e14309, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36938447

RESUMO

Metastasis is a major obstacle in the treatment of hepatocellular carcinoma (HCC). Microtubule-associated protein 4 (MAP4) plays an important role as a coordinator between microtubules and microfilaments. However, the role of MAP4 in HCC migration and epithelial mesenchymal transition (EMT) is unclear. We compared the protein and mRNA levels of MAP4 in human HCC and adjacent normal tissues using western blotting, immunohistochemistry and RT-qPCR. The migration and invasion abilities and the levels of EMT markers (E-Cadherin, N-Cadherin, Vimentin, and Snail) were compared between MAP4-knockdown and MAP4-overexpressed HCC cells. Finally, we examined whether ß-catenin and glycogen synthase kinase 3ß (GSK3ß) are involved in the stimulatory effects of MAP4 on HCC migration, invasion and EMT. The results revealed that MAP4 levels were higher in the HCC tissues than in the normal hepatic tissues. More importantly, MAP4 knockdown suppressed migration and invasion abilities and EMT processes in HCC cells, which were confirmed by the stimulatory effects of MAP4 overexpression on EMT processes in HCC cells. Further evidence demonstrated that the up-regulation of ß-catenin activity induced by the interaction between MAP4 and GSK3ß possibly accounted for the pro-migration and pro-EMT effects of MAP4 on HCC cells. Taken together, these results suggest that MAP4 promotes migration, invasion, and EMT in HCC cells by regulating the GSK3ß/ß-catenin pathway.

14.
Front Endocrinol (Lausanne) ; 14: 1089527, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875494

RESUMO

SET domain-containing 5 (SETD5) is an uncharacterized member of the protein lysine methyltransferase family and is best known for its transcription machinery by methylating histone H3 on lysine 36 (H3K36). These well-characterized functions of SETD5 are transcription regulation, euchromatin formation, and RNA elongation and splicing. SETD5 is frequently mutated and hyperactive in both human neurodevelopmental disorders and cancer, and could be down-regulated by degradation through the ubiquitin-proteasome pathway, but the biochemical mechanisms underlying such dysregulation are rarely understood. Herein, we provide an update on the particularities of SETD5 enzymatic activity and substrate specificity concerning its biological importance, as well as its molecular and cellular impact on normal physiology and disease, with potential therapeutic options.


Assuntos
Metiltransferases , Transtornos do Neurodesenvolvimento , Humanos , Histonas , Lisina , Metiltransferases/química , Metiltransferases/genética
15.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 29(3): 524-9, 2012 Jun.
Artigo em Zh | MEDLINE | ID: mdl-22826952

RESUMO

To investigate the effect of monoamine oxidase inhibitor tranylcypromine (TCP) on the differentiation of human U251 glioma cells, we treated U251 cells with TCP and/or 100 nmol/L histone deacetylase inhibitor trychostatin A (TSA). The differentiation of U251 cells was observed with inverted microscopy. The cell proliferation and cell cycle distribution were determined by MTT assay and flow cytometry, respectively. Apoptosis was observed by Hoechst 33258 staining. The levels of differentiation-related genes were assessed by real-time PCR and Western blotting. TCP-induced differentiation was characterized by typical morphological changes, inhibition of cellular proliferation, accumulation of cells in the G1 phase of the cell cycle, decreased expression of the pluripotency transcription factors Oct4 and Sox2, and increased expression of glial fibrillary acid protein (GFAP). The combination of TCP and TSA treatment also triggered an over-expression of GFAP. These findings suggest that TCP may induce differentiation of U251 glioma cells, and the differentiation process may be promoted by histone deacetylase inhibitor TSA.


Assuntos
Neoplasias Encefálicas/patologia , Transformação Celular Neoplásica/efeitos dos fármacos , Glioma/patologia , Inibidores da Monoaminoxidase/farmacologia , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Tranilcipromina/farmacologia
16.
Am J Cancer Res ; 12(3): 1143-1155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35411228

RESUMO

Geranylgeranylation signaling plays an important role in cancer cell proliferation. Our previous studies have shown that the YAP is one of the geranylgeranylation signal transducers in breast cancer cells (Mi W, et al., Oncogene. 2015; 34(24): 3095-3106). However, the downstream effectors that mediate the promoting effect of the geranylgeranylation/YAP signal axis on breast cancer cell proliferation remain elusive. In this report, we investigated the pathway that mediates the effect of the geranylgeranylation on breast cancer cell proliferation. The results have shown that inhibition of geranylgeranyl biosynthesis inactivates transcription of a set of kinetochore/centromere genes. Further biochemical and cell biological studies demonstrated that inhibition of geranylgeranyl biosynthesis significantly reduced the level of key kinetochore/centromere proteins, thus caused a defect in mitosis. Knockdown of YAP caused similar inhibitory effects on the kinetochore/centromere gene expression and mitosis to that of inhibition of geranylgeranyl biosynthesis. Furthermore, we found that E2F1, the gene coding for E2F1 that is known to activate expression of cell cycle genes, is a target gene of YAP. Knockdown of E2F1 also reduced expression of the kinetochore/centromere genes, suggesting that the activation effect of YAP on expression of the kinetochore/centromere genes may be mediated by E2F1. Our studies have proposed a novel geranylgeranylation-dependent cancer cell proliferation signaling pathway in which geranylgeranylation signaling promotes cancer cell mitosis via the YAP-activated transcription of kinetochore/centromere genes.

17.
Medicine (Baltimore) ; 101(34): e30222, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36042628

RESUMO

Aldolase A (A-2) (ALD), Kelch-like-ECH associated protein-1 (Keap-1), and Forkhead box O4 (FoxO4) are key regulatory proteins, which have been proven to be involved in tumor development. However, the clinicopathological significance of ALD, Keap-1, and FoxO4 expressions in colorectal (colon) carcinoma (CRC) is not clearly known. We sought to explore the clinicopathological significance of ALD, Keap-1, and FoxO4 in CRC to provide evidences for potential monitoring index of CRC. Cases of 199 CRC patients were analyzed retrospectively. Evaluation of ALD, cAMP response element-binding protein-2, cyclo-oxygenase 2, FoxO4, Keap-1, and p53 expressions in CRC patients was accomplished with immunohistochemical technique. The patients were divided into negative and positive groups in accordance with immunohistochemical result. We compared the clinicopathological characteristics of the patients in the 2 groups, coupled with analysis of the relationship between 6 aforesaid proteins and clinicopathological characteristics. Herein, we confirmed the association of tumor location with the expression of ALD, Keap-1, and FoxO4. Also, tumor differentiation was observed to associate significantly with the expression of Keap-1, FoxO4, and Cox-2. The data also revealed that there was a correlation between smoking and expression of ALD, Keap-1, FoxO4, p53, and Cox-2. Nevertheless, insignificant difference was observed when clinicopathological characteristics were compared with cAMP response element-binding protein-2 expression. These findings suggest that ALD, Keap-1, and FoxO4 reinvolved in CRC development, and thus may be considered as potential monitoring protein for CRC.


Assuntos
Neoplasias Colorretais , Fatores de Transcrição Forkhead , Frutose-Bifosfato Aldolase , Proteína 1 Associada a ECH Semelhante a Kelch , Biomarcadores Tumorais/análise , Proteínas de Ciclo Celular/metabolismo , Neoplasias Colorretais/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ciclo-Oxigenase 2 , Fatores de Transcrição Forkhead/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Estudos Retrospectivos , Proteína Supressora de Tumor p53
18.
Curr Res Food Sci ; 5: 1403-1411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105890

RESUMO

Nicotinamide mononucleotide (NMN) exerts physiological effects in mammals through its conversion to nicotinamide adenine dinucleotide (NAD+). In this study, we established experimental models of colitis by mixing drinking water of C57BL/6J mice with dextran sodium sulphate (DSS), and then fed them with the same concentration of NMN or at the same time. After NMN treatment, we observed improved morphology of inflamed intestines, slightly restored length of colon, improved barrier function and reduced proinflammatory factors expression in serum. Also, significant alterations in the composition and abundance of intestinal flora in IBD mice were found. The abundance of Firmicutes, Verrucomicrobia, Akkermansia and Lactobacillus, considered as beneficial bacteria, increased, while Bacteroidetes and Muribaculaceae unclassifiably decreased. Taken together, these results suggest that NMN may improve intestinal inflammation, reduce intestinal mucosal permeability and repair gut flora dysbiosis in IBD.

19.
Oncol Lett ; 21(2): 102, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33376535

RESUMO

Lysine-specific demethylase 1 (LSD1) is a nuclear protein and the first histone demethylase to be identified. LSD1 is an evolutionarily conserved member of the FAD-dependent amine oxidase family and serves an important role in controlling gene expression. LSD1 has been implicated in the tumorigenesis and progression of several types of human cancer; however, to the best of our knowledge, the expression levels and clinical significance of LSD1 in triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (NTNBC) have not been investigated in detail. Therefore, the present study aimed to compare the expression levels of LSD1 in TNBC and NTNBC to determine the prognostic significance of LSD1 in breast cancer. Previous studies have suggested that LSD1 may be involved in the carcinogenesis and progression of breast cancer; however, the findings of the present study indicated that LSD1 may not be a suitable molecular treatment target and auxiliary diagnostic indicator for TNBC and NTNBC.

20.
Life (Basel) ; 11(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34833029

RESUMO

Our previous studies have shown that the HECT E3 ubiquitin ligase NEDD4 and kinase MEKK5 both play an essential role in lung cancer migration. A report predicts that MEKK5 may be ubiquitinated by NEDD4; however, interaction of MEKK5 with NEDD4 and ubiquitination of MEKK5 by NEDD4 have not been characterized. In this report, we show that NEDD4 interacts with MEKK5 through a conserved WW3 domain by the co-immunoprecipitation and the GST-pulldown assays. The ubiquitination assay indicates that MEKK5 is not a ubiquitination substrate of NEDD4, but negatively regulates NEDD4-mediated ubiquitination. Furthermore, overexpression of MEKK5 significantly reduced the NEDD4-promoted lung cancer cell migration. Taken together, our studies have defined an inhibitory role of MEKK5 in regulation of NEDD4-mediated ubiquitination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA