RESUMO
The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a key enzyme, which extensively digests CoV replicase polyproteins essential for viral replication and transcription, making it an attractive target for antiviral drug development. However, the molecular mechanism of how Mpro of SARS-CoV-2 digests replicase polyproteins, releasing the nonstructural proteins (nsps), and its substrate specificity remain largely unknown. Here, we determine the high-resolution structures of SARS-CoV-2 Mpro in its resting state, precleavage state, and postcleavage state, constituting a full cycle of substrate cleavage. The structures show the delicate conformational changes that occur during polyprotein processing. Further, we solve the structures of the SARS-CoV-2 Mpro mutant (H41A) in complex with six native cleavage substrates from replicase polyproteins, and demonstrate that SARS-CoV-2 Mpro can recognize sequences as long as 10 residues but only have special selectivity for four subsites. These structural data provide a basis to develop potent new inhibitors against SARS-CoV-2.
Assuntos
Proteases 3C de Coronavírus , RNA-Polimerase RNA-Dependente de Coronavírus , SARS-CoV-2 , Antivirais/química , Proteases 3C de Coronavírus/química , RNA-Polimerase RNA-Dependente de Coronavírus/química , RNA-Polimerase RNA-Dependente de Coronavírus/genética , Poliproteínas/química , Conformação Proteica , Proteólise , SARS-CoV-2/enzimologia , Especificidade por Substrato/genéticaRESUMO
The coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which spreads rapidly all over the world. The main protease (Mpro) is significant to the replication and transcription of viruses, making it an attractive drug target against coronaviruses. Here, we introduce a series of novel inhibitors which are designed de novo through structure-based drug design approach that have great potential to inhibit SARS-CoV-2 Mproin vitro. High-resolution structures show that these inhibitors form covalent bonds with the catalytic cysteine through the novel dibromomethyl ketone (DBMK) as a reactive warhead. At the same time, the designed phenyl group beside the DBMK warhead inserts into the cleft between H41 and C145 through π-π stacking interaction, splitting the catalytic dyad and disrupting proton transfer. This unique binding model provides novel clues for the cysteine protease inhibitor development of SARS-CoV-2 as well as other pathogens.
Assuntos
Antivirais , Proteases 3C de Coronavírus , Desenho de Fármacos , Inibidores de Proteases , Ligação Proteica , SARS-CoV-2 , SARS-CoV-2/enzimologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Antivirais/química , Antivirais/farmacologia , Humanos , Sítios de Ligação , Domínio Catalítico , Modelos Moleculares , Cristalografia por Raios X , Simulação de Acoplamento Molecular , Tratamento Farmacológico da COVID-19RESUMO
Respiratory disease caused by coronavirus infection remains a global health crisis. Although several SARS-CoV-2-specific vaccines and direct-acting antivirals are available, their efficacy on emerging coronaviruses in the future, including SARS-CoV-2 variants, might be compromised. Host-targeting antivirals provide preventive and therapeutic strategies to overcome resistance and manage future outbreak of emerging coronaviruses. Cathepsin L (CTSL) and calpain-1 (CAPN1) are host cysteine proteases which play crucial roles in coronaviral entrance into cells and infection-related immune response. Here, two peptidomimetic α-ketoamide compounds, 14a and 14b, were identified as potent dual target inhibitors against CTSL and CAPN1. The X-ray crystal structures of human CTSL and CAPN1 in complex with 14a and 14b revealed the covalent binding of α-ketoamide groups of 14a and 14b to C25 of CTSL and C115 of CAPN1. Both showed potent and broad-spectrum anticoronaviral activities in vitro, and it is worth noting that they exhibited low nanomolar potency against SARS-CoV-2 and its variants of concern (VOCs) with EC50 values ranging from 0.80 to 161.7 nM in various cells. Preliminary mechanistic exploration indicated that they exhibited anticoronaviral activity through blocking viral entrance. Moreover, 14a and 14b exhibited good oral pharmacokinetic properties in mice, rats and dogs, and favorable safety in mice. In addition, both 14a and 14b treatments demonstrated potent antiviral potency against SARS-CoV-2 XBB 1.16 variant infection in a K18-hACE2 transgenic mouse model. And 14b also showed effective antiviral activity against HCoV-OC43 infection in a mouse model with a final survival rate of 60%. Further evaluation showed that 14a and 14b exhibited excellent anti-inflammatory effects in Raw 264.7 mouse macrophages and in mice with acute pneumonia. Taken together, these results suggested that 14a and 14b are promising drug candidates, providing novel insight into developing pan-coronavirus inhibitors with antiviral and anti-inflammatory properties.
Assuntos
COVID-19 , Hepatite C Crônica , Humanos , Animais , Camundongos , Ratos , Cães , Calpaína , Catepsina L , Antivirais/farmacologia , Vacinas contra COVID-19 , Modelos Animais de Doenças , Camundongos Transgênicos , Anti-InflamatóriosRESUMO
Since 2019, SARS-CoV-2 has evolved rapidly and gained resistance to multiple therapeutics targeting the virus. Development of host-directed antivirals offers broad-spectrum intervention against different variants of concern. Host proteases, TMPRSS2 and CTSL/CTSB cleave the SARS-CoV-2 spike to play a crucial role in the two alternative pathways of viral entry and are characterized as promising pharmacological targets. Here, we identify compounds that show potent inhibition of these proteases and determine their complex structures with their respective targets. Furthermore, we show that applying inhibitors simultaneously that block both entry pathways has a synergistic antiviral effect. Notably, we devise a bispecific compound, 212-148, exhibiting the dual-inhibition ability of both TMPRSS2 and CTSL/CTSB, and demonstrate antiviral activity against various SARS-CoV-2 variants with different viral entry profiles. Our findings offer an alternative approach for the discovery of SARS-CoV-2 antivirals, as well as application for broad-spectrum treatment of viral pathogenic infections with similar entry pathways.