Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Angew Chem Int Ed Engl ; 62(10): e202218454, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36624050

RESUMO

Despite conspicuous merits of Zn metal anodes, the commercialization is still handicapped by rampant dendrite formation and notorious side reaction. Manipulating the nucleation mode and deposition orientation of Zn is a key to rendering stabilized Zn anodes. Here, a dual electrolyte additive strategy is put forward via the direct cooperation of xylitol (XY) and graphene oxide (GO) species into typical zinc sulfate electrolyte. As verified by molecular dynamics simulations, the incorporated XY molecules could regulate the solvation structure of Zn2+ , thus inhibiting hydrogen evolution and side reactions. The self-assembled GO layer is in favor of facilitating the desolvation process to accelerate reaction kinetics. Progressive nucleation and orientational deposition can be realized under the synergistic modulation, enabling a dense and uniform Zn deposition. Consequently, symmetric cell based on dual additives harvests a highly reversible cycling of 5600 h at 1.0 mA cm-2 /1.0 mAh cm-2 .

2.
Angew Chem Int Ed Engl ; 62(21): e202302302, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36959698

RESUMO

The performance of aqueous Zn ion batteries (AZIBs) is highly dependent on inner Helmholtz plane (IHP) chemistry. Notorious parasitic reactions containing hydrogen evolution reactions (HER) and Zn dendrites both originate from abundant free H2 O and random Zn deposition inside active IHP. Here, we report a universal high donor number (DN) additive pyridine (Py) with only 1 vol. % addition (Py-to-H2 O volume ratio), for regulating molecule distribution inside IHP. Density functional theory (DFT) calculations and molecular dynamics (MD) simulation verify that incorporated Py additive could tailor Zn2+ solvation sheath and exclude H2 O molecules from IHP effectively, which is in favor of preventing H2 O decomposition. Consequently, even at extreme conditions such as high depth of discharge (DOD) of 80 %, the symmetric cell based on Py additive can sustain approximately 500 h long-term stability. This efficient strategy with high DN additives furnishes a promising direction for designing novel electrolytes and promoting the practical application of AZIBs, despite inevitably introducing trace organic additives.

3.
Small ; 18(10): e2107163, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35112793

RESUMO

Aqueous Zn-ion batteries (ZIBs) have emerged as a promising energy supply for next-generation wearable electronics, yet they are still impeded by the notorious growth of zinc dendrite and uncontrollable side reaction. While the rational design of electrolyte composition or separator decoration can effectively restrain zinc dendrite growth, synchronously regulating the interfacial electrochemical performance by tackling the physical delamination venture between electrode and electrolyte remains a major obstacle for high-performance wearable aqueous ZIB. Herein, a category of hybrid biogel electrolyte containing carrageenan and wool keratin (CWK) is put forward to regulate the interfacial electrochemistry in aqueous ZIB. Systematic electrochemical kinetics analyses and ex situ scanning electrochemical microscopy (SECM) characterizations achieve comprehensive understanding of the keratin enhanced interfacial Zn2+ redox reaction. Thanks to the keratin triggered selective ion permeability, the as-designed CWK hybrid biogel electrolyte manifests a promoted Zn2+ transference number and excellent reversibility of Zn plating/stripping and outstanding Zn utilization (average Coulombic efficiency ≈98%). More impressively, the CWK hybrid biogel electrolyte also demonstrates cathode side-reaction depression and strengthened interfacial adhesion while assembled into a quasi-solid-state flexible ZIB. This work offers a strategy to synchronously solve concurrent challenges for both of Zn anode and cathode toward realistic wearable aqueous ZIB.


Assuntos
Queratinas , , Animais , Fontes de Energia Elétrica , Eletrólitos , Zinco
4.
Macromol Rapid Commun ; 43(23): e2200542, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35856411

RESUMO

2D conducting polymer thin film recently has garnered numerous interests as a means of combining the molecular aggregate ordering and promoting in-plane charge transport for large-scale/flexible organic electronics. However, it remains far from satisfactory for conducting polymer chains to achieve desirable surface topography and crystallinity due to lack of control over the precursor-involved interfacial assembly. Herein, wafer-size polyaniline (PANI) and tetra-aniline thin films are developed via a controlled interfacial synthesis with customized surface morphology and crystallinity through two typical aniline precursors selective polymerization. Two crucial competing assembly mechanisms, a) direct interfacial polymerization, b) solution polymerization and subsequent interfacial assembly, are investigated to play a vital role in determining elemental chain length and aggregate architecture. The optimal PANI thin film manifests ultraflat surface topography and unambiguous crystalline domains, which also enabling fascinating ammonia sensing capability with 31.4% ppm-1 sensitivity, fast response time (88 s) with astonishing selectivity, repeatability, and recovery capability. The thus-demonstrated strategy with wafer-scale processing potential and flexible microdevice offers a promising route for large-scale manufacturing thin-film organic electronics.


Assuntos
Compostos de Anilina , Polímeros , Polimerização , Compostos de Anilina/química
5.
Small ; 16(7): e1906566, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31971671

RESUMO

Potassium ion batteries (KIB) have become a compelling energy-storage system owing to their cost effectiveness and the high abundance of potassium in comparison with lithium. However, its practical applications have been thwarted by a series of challenges, including marked volume expansion and sluggish reaction kinetics caused by the large radius of potassium ions. In line with this, the exploration of reliable anode materials affording high electrical conductivity, sufficient active sites, and structural robustness is the key. The synthesis of ZIF-8@ZIF-67 derived nitrogen-doped porous carbon confined CoP polyhedron architectures (NC@CoP/NC) to function as innovative KIB anode materials is reported. Such composites enable an outstanding rate performance to harvest a capacity of ≈200 mAh g-1 at 2000 mA g-1 . Additionally, a high cycling stability can be gained by maintaining a high capacity retention of 93% after 100 cycles at 100 mA g-1 . Furthermore, the potassium ion storage mechanism of the NC@CoP/NC anode is systematically probed through theoretical simulations and experimental characterization. This contribution may offer an innovative and feasible route of emerging anode design toward high performance KIBs.

6.
Chem Rev ; 118(18): 9233-9280, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30204424

RESUMO

Ongoing technological advances in diverse fields including portable electronics, transportation, and green energy are often hindered by the insufficient capability of energy-storage devices. By taking advantage of two different electrode materials, asymmetric supercapacitors can extend their operating voltage window beyond the thermodynamic decomposition voltage of electrolytes while enabling a solution to the energy storage limitations of symmetric supercapacitors. This review provides comprehensive knowledge to this field. We first look at the essential energy-storage mechanisms and performance evaluation criteria for asymmetric supercapacitors to understand the wide-ranging research conducted in this area. Then we move to the recent progress made for the design and fabrication of electrode materials and the overall structure of asymmetric supercapacitors in different categories. We also highlight several key scientific challenges and present our perspectives on enhancing the electrochemical performance of future asymmetric supercapacitors.

7.
J Am Chem Soc ; 140(4): 1428-1437, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29345915

RESUMO

The parasitic reactions associated with reduced oxygen species and the difficulty in achieving the high theoretical capacity have been major issues plaguing development of practical nonaqueous Li-O2 batteries. We hereby address the above issues by exploring the synergistic effect of 2,5-di-tert-butyl-1,4-benzoquinone and H2O on the oxygen chemistry in a nonaqueous Li-O2 battery. Water stabilizes the quinone monoanion and dianion, shifting the reduction potentials of the quinone and monoanion to more positive values (vs Li/Li+). When water and the quinone are used together in a (largely) nonaqueous Li-O2 battery, the cell discharge operates via a two-electron oxygen reduction reaction to form Li2O2, with the battery discharge voltage, rate, and capacity all being considerably increased and fewer side reactions being detected. Li2O2 crystals can grow up to 30 µm, more than an order of magnitude larger than cases with the quinone alone or without any additives, suggesting that water is essential to promoting a solution dominated process with the quinone on discharging. The catalytic reduction of O2 by the quinone monoanion is predominantly responsible for the attractive features mentioned above. Water stabilizes the quinone monoanion via hydrogen-bond formation and by coordination of the Li+ ions, and it also helps increase the solvation, concentration, lifetime, and diffusion length of reduced oxygen species that dictate the discharge voltage, rate, and capacity of the battery. When a redox mediator is also used to aid the charging process, a high-power, high energy density, rechargeable Li-O2 battery is obtained.

8.
Small ; 13(19)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28371336

RESUMO

Electrochemical capacitor systems based on Al ions can offer the possibilities of low cost and high safety, together with a three-electron redox-mechanism-based high capacity, and thus are expected to provide a feasible solution to meet ever-increasing energy demands. Here, highly efficient Al-ion intercalation into W18 O49 nanowires (W18 O49 NWs) with wide lattice spacing and layered single-crystal structure for electrochemical storage is demonstrated. Moreover, a freestanding composite film with a hierarchical porous structure is prepared through vacuum-assisted filtration of a mixed dispersion containing W18 O49 NWs and single-walled carbon nanotubes. The as-prepared composite electrode exhibits extremely high areal capacitances of 1.11-2.92 F cm-2 and 459 F cm-3 at 2 mA cm-2 , enhanced electrochemical stability in the Al3+ electrolyte, as well as excellent mechanical properties. An Al-ion-based, flexible, asymmetric electrochemical capacitor is assembled that displays a high volumetric energy density of 19.0 mWh cm-3 at a high power density of 295 mW cm-3 . Finally, the Al-ion-based asymmetric supercapacitor is used as the power source for poly(3-hexylthiophene)-based electrochromic devices, demonstrating their promising capability in flexible electronic devices.

9.
Chem Soc Rev ; 44(11): 3639-65, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25898904

RESUMO

The demand for flexible/wearable electronic devices that have aesthetic appeal and multi-functionality has stimulated the rapid development of flexible supercapacitors with enhanced electrochemical performance and mechanical flexibility. After a brief introduction to flexible supercapacitors, we summarize current progress made with graphene-based electrodes. Two recently proposed prototypes for flexible supercapacitors, known as micro-supercapacitors and fiber-type supercapacitors, are then discussed. We also present our perspective on the development of graphene-based electrodes for flexible supercapacitors.

10.
Science ; 384(6702): 1318-1323, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38900888

RESUMO

High dynamic strength is of fundamental importance for fibrous materials that are used in high-strain rate environments. Carbon nanotube fibers are one of the most promising candidates. Using a strategy to optimize hierarchical structures, we fabricated carbon nanotube fibers with a dynamic strength of 14 gigapascals (GPa) and excellent energy absorption. The dynamic performance of the fibers is attributed to the simultaneous breakage of individual nanotubes and delocalization of impact energy that occurs during the high-strain rate loading process; these behaviors are due to improvements in interfacial interactions, nanotube alignment, and densification therein. This work presents an effective strategy to utilize the strength of individual carbon nanotubes at the macroscale and provides fresh mechanism insights.

11.
ACS Nano ; 18(22): 14377-14387, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38781118

RESUMO

Liquid crystal wet-spun carbon nanotube fibers (CNTFs) offer notable advantages, such as precise alignment and scalability. However, these CNTFs usually suffer premature failure through intertube slippage due to the weak interfacial interactions between adjacent shells and bundles. Herein, we present a microwave (MW) welding strategy to enhance intertube interactions by partially carbonizing interstitial heterocyclic aramid polymers. The resulting CNTFs exhibit ultrahigh static tensile strength (6.74 ± 0.34 GPa) and dynamic tensile strength (9.52 ± 1.31 GPa), outperforming other traditional high-performance fibers. This work provides a straightforward yet effective approach to strengthening CNTFs for advanced engineering applications.

12.
Sci Adv ; 10(14): eadk0647, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569023

RESUMO

Conjugated polymers have demonstrated promising optoelectronic properties, but their brittleness and poor mechanical characteristics have hindered their fabrication into durable fibers and textiles. Here, we report a universal approach to continuously producing highly strong, ultratough conjugated polymer fibers using a flow-enhanced crystallization (FLEX) method. These fibers exhibit one order of magnitude higher tensile strength (>200 megapascals) and toughness (>80 megajoules per cubic meter) than traditional semiconducting polymer fibers and films, outperforming many synthetic fibers, ready for scalable production. These fibers also exhibit unique strain-enhanced electronic properties and exceptional performance when used as stretchable conductors, thermoelectrics, transistors, and sensors. This work not only highlights the influence of fluid mechanical effects on the crystallization and mechanical properties of conjugated polymers but also opens up exciting possibilities for integrating these functional fibers into wearable electronics.

13.
Adv Mater ; 34(33): e2203905, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35765207

RESUMO

Wet-spinning is a promising strategy to fabricate fiber electrodes for real commercial fiber battery applications, according to its great compatibility with large-scale fiber production. However, engineering the rheological properties of the electrochemical active materials to accommodate the viscoelasticity or liquid crystalline requirements for continuous wet-spinning remains a daunting challenge. Here, with entropy-driven volume-exclusion effects, the rheological behavior of vanadium pentoxide (V2 O5 ) nanowire dispersions is regulated through introducing 2D graphene oxide (GO) flakes in an optimal ratio. By optimizing the viscoelasticity and liquid-crystalline behavior of the spinning dope, the wet-spun hybrid fibers display controlled hierarchical orientation. The wet-spun V2 O5 /rGO hybrid fiber with the optimal 10:1 mass fraction (V2 O5 /rGO10:1 ) exhibits a highly oriented nanoblock arrangement, enabling efficient Zn-ion migration and an excellent Zn-ion storage capacity of 486.03 mAh g-1 at 0.1 A g-1 . A half-meter long quasi-solid-state fiber Zn-ion battery is assembled with a polyacrylamide gel electrolyte and biocompatible Ecoflex encapsulation. The thus-derived fiber Zn-ion battery is integrated into a wearable self-powered system, incorporating a highly efficient GaAs solar cell, which delivers a record-high overall efficiency (9.80%) for flexible solar charging systems.

14.
Mater Horiz ; 9(1): 383-392, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34586118

RESUMO

Recent advances in wearable and implantable electronics have increased the demand for biocompatible integrated energy storage systems. Conducting polymers, such as polyaniline (PANi), have been suggested as promising electrode materials for flexible biocompatible energy storage systems, based on their intrinsic structural flexibility and potential polymer chain compatibility with biological interfaces. However, due to structural disorder triggering insufficient electronic conductivity and moderate electrochemical stability, PANi still cannot fully satisfy the requirements for flexible and biocompatible energy storage systems. Herein, we report a biocompatible physiological electrolyte activated flexible supercapacitor encompassing crystalline tetra-aniline (c-TANi) as the active electrode material, which significantly enhances the specific capacitance and electrochemical cycling stability with chloride electrochemical interactions. The crystallization of TANi endows it with sufficient electronic conductivity (8.37 S cm-1) and a unique Cl- dominated redox charge storage mechanism. Notably, a fully self-healable and biocompatible supercapacitor has been assembled by incorporating polyethylene glycol (PEG) with c-TANi as a self-healable electrode and a ferric-ion cross-linked sodium polyacrylate (Fe3+-PANa)/0.9 wt% NaCl as a gel electrolyte. The as-prepared device exhibits a remarkable capacitance retention even after multiple cut/healing cycles. With these attractive features, the c-TANi electrode presents a promising approach to meeting the power requirements for wearable or implantable electronics.


Assuntos
Compostos de Anilina , Cloretos , Capacitância Elétrica , Eletrodos , Eletrólitos
15.
J Biol Chem ; 285(37): 28749-63, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20584903

RESUMO

The interaction of Bcl-2 family proteins at the mitochondrial outer membrane controls membrane permeability and thereby the apoptotic program. The anti-apoptotic protein Bcl-2 binds to the pro-apoptotic protein Bax to prevent Bax homo-oligomerization required for membrane permeabilization. Here, we used site-specific photocross-linking to map the surfaces of Bax and Bcl-2 that interact in the hetero-complex formed in a Triton X-100 micelle as a membrane surrogate. Heterodimer-specific photoadducts were detected from multiple sites in Bax and Bcl-2. Many of the interaction sites are located in the Bcl-2 homology 3 (BH3) region of Bax and the BH1-3 groove of Bcl-2 that likely form the BH3-BH1-3 groove interface. However, other interaction sites form a second interface that includes helix 6 of Bax and the BH4 region of Bcl-2. Loss-of-function mutations in the BH3 region of Bax and the BH1 region of Bcl-2 disrupted the BH3-BH1-3 interface, as expected. Surprisingly the second interface was also disrupted by these mutations. Similarly, a loss-of-function mutation in the BH4 region of Bcl-2 that forms part of the second interface also disrupted both interfaces. As expected, both kinds of mutation abolished Bcl-2-mediated inhibition of Bax oligomerization in detergent micelles. Therefore, Bcl-2 binds Bax through two interdependent interfaces to inhibit the pro-apoptotic oligomerization of Bax.


Assuntos
Mutação , Multimerização Proteica/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteína X Associada a bcl-2/química , Motivos de Aminoácidos , Animais , Humanos , Ligação Proteica , Estrutura Quaternária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
16.
J Biol Chem ; 285(23): 17614-27, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20382739

RESUMO

Interactions of Bcl-2 family proteins regulate permeability of the mitochondrial outer membrane and apoptosis. In particular, Bax forms an oligomer that permeabilizes the membrane. To map the interface of the Bax oligomer we used Triton X-100 as a membrane surrogate and performed site-specific photocross-linking. Bax-specific adducts were formed through photo-reactive probes at multiple sites that can be grouped into two surfaces. The first surface overlaps with the BH1-3 groove formed by Bcl-2 Homology motif 1, 2, and 3; the second surface is a rear pocket located on the opposite side of the protein from the BH1-3 groove. Further cross-linking experiments using Bax BH3 peptides and mutants demonstrated that the two surfaces interact with their counterparts in neighboring proteins to form two separated interfaces and that interaction at the BH1-3 groove primes the rear pocket for further interaction. Therefore, Bax oligomerization proceeds through a series of interactions that occur at separate, yet allosterically, coupled interfaces.


Assuntos
Apoptose , Proteína X Associada a bcl-2/metabolismo , Sítio Alostérico , Motivos de Aminoácidos , Bioquímica/métodos , Reagentes de Ligações Cruzadas/química , Detergentes/farmacologia , Humanos , Mutação , Octoxinol/farmacologia , Peptídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/química
17.
Mater Horiz ; 8(4): 1130-1152, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821908

RESUMO

The demand for high rate energy storage systems is continuously increasing driven by portable electronics, hybrid/electric vehicles and the need for balancing the smart grid. Accordingly, Nb2O5 based materials have gained great attention because of their fast cation intercalation faradaic charge storage that endows them with high rate energy storage performance. In this review, we describe the crystalline features of the five main phases of Nb2O5 and analyze their specific electrochemical characteristics with an emphasis on the intrinsic ion intercalation pseudocapacitive behavior of T-Nb2O5. The charge storage mechanisms, electrochemical performance and state-of-the-art characterization techniques for Nb2O5 anodes are summarized. Next, we review recent progress in developing various types of Nb2O5 based fast charging electrode materials, including Nb2O5 based mixed metal oxides and composites. Finally, we highlight the major challenges for Nb2O5 based materials in the realm of high rate rechargeable energy storage and provide perspectives for future research.

18.
ACS Nano ; 15(2): 3098-3107, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33576601

RESUMO

The construction of aqueous Zn-ion hybrid capacitors (ZICs) reconciling high energy/power density is practically meaningful yet remains a grand challenge. Herein, a high-capacitance and long-life ZIC is demonstrated by 3D printing of a Ti3C2 MXene cathode, affording optimized carrier transport, facile electrolyte penetration, and ample porosity. The 3D-printable additive-free MXene ink with desirable rheological property is derived by a fast gelation process employing a trace amount of divalent cations, which overcomes the tedious post-treatments required for additive removal. The thus-fabricated 3D-printed (3DP) MXene cathode results in a dual-ion storage mechanism to synergize pseudocapacitive behavior of H+ and electrical double-layer capacitive behavior of Zn2+, which is systematically probed by a wide suite of in situ/ex situ electroanalytic characterizations. The 3DP MXene cathode accordingly exhibits a favorable areal capacitance of 1006.4 mF cm-2 at 0.38 mA cm-2 and excellent rate capability (184.4 F g-1 at 10 A g-1), outperforming the state-of-the-art ZICs. More impressively, ZIC full cells comprising a 3DP MXene cathode and a 3DP Zn anode deliver a competitive energy/power density of 0.10 mWh cm-2/5.90 mW cm-2 as well as an ultralong lifespan (86.5% capacity retention over 6000 cycles at 10 mA cm-2).

19.
ACS Nano ; 15(4): 7821-7832, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33834770

RESUMO

MXenes are an emerging class of highly conductive two-dimensional (2D) materials with electrochemical storage features. Oriented macroscopic Ti3C2Tx fibers can be fabricated from a colloidal 2D nematic phase dispersion. The layered conductive Ti3C2Tx fibers are ideal candidates for constructing high-speed ionic transport channels to enhance the electrochemical capacitive charge storage performance. In this work, we assemble Ti3C2Tx fibers with a high degree of flake orientation by a wet spinning process with controlled spinning speeds and morphology of the spinneret. In addition to the effects of cross-linking of magnesium ions between Ti3C2Tx flakes, the electronic conductivity and mechanical strength of the as-prepared fibers have been improved to 7200 S cm-1 and 118 MPa, respectively. The oriented Ti3C2Tx fibers present a volumetric capacitive charge storage capability of up to 1360 F cm-3 even in a Mg-ion based neutral electrolyte, with contributions from both nanofluidic ion transport and Mg-ion intercalation pseudocapacitance. The oriented 2D Ti3C2Tx driven nanofluidic channels with great electronic conductivity and mechanical strength endows the MXene fibers with attributes for serving as conductive ionic cables and active materials for fiber-type capacitive electrochemical energy storage, biosensors, and potentially biocompatible fibrillar tissues.

20.
Nanomicro Lett ; 12(1): 143, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34138137

RESUMO

Designing high-performance electrodes via 3D printing for advanced energy storage is appealing but remains challenging. In normal cases, light-weight carbonaceous materials harnessing excellent electrical conductivity have served as electrode candidates. However, they struggle with undermined areal and volumetric energy density of supercapacitor devices, thereby greatly impeding the practical applications. Herein, we demonstrate the in situ coupling of NiCoP bimetallic phosphide and Ti3C2 MXene to build up heavy NCPM electrodes affording tunable mass loading throughout 3D printing technology. The resolution of prints reaches 50 µm and the thickness of device electrodes is ca. 4 mm. Thus-printed electrode possessing robust open framework synergizes favorable capacitance of NiCoP and excellent conductivity of MXene, readily achieving a high areal and volumetric capacitance of 20 F cm-2 and 137 F cm-3 even at a high mass loading of ~ 46.3 mg cm-2. Accordingly, an asymmetric supercapacitor full cell assembled with 3D-printed NCPM as a positive electrode and 3D-printed activated carbon as a negative electrode harvests remarkable areal and volumetric energy density of 0.89 mWh cm-2 and 2.2 mWh cm-3, outperforming the most of state-of-the-art carbon-based supercapacitors. The present work is anticipated to offer a viable solution toward the customized construction of multifunctional architectures via 3D printing for high-energy-density energy storage systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA