Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Small ; 19(35): e2300895, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37096897

RESUMO

Rechargeable zinc-ion batteries (RZIBs) have gained promising attention as a feasible alternative for large-scale energy storage by the virtue of their intrinsic security, environmental benignity, low cost, and high volumetric capacity (5849 mAh cm-3 ). Nevertheless, the deep-rooted issues of dendrite formation and side reactions in unstable Zn metal anode have impeded RZIBs from being dependably deployed in their proposed applications. Herein, silk fibroin (SF) and lysozyme (ly), as natural biomacromolecules with abundant polar groups arranged in polypeptide backbones, are in situ self-assembled on the Zn anode surface to construct a homogeneous and compact protein nanofilm. Such protein nanofilm protecting layer presents a negative charge surface and significantly regulates Zn2+ deposition behavior. Meanwhile, synergistic flexible and robust features of protein nanofilm function as artificial solid electrolyte interface (SEI), accommodates the dynamic volume deformation during deposition/dissolution, and blocks corrosion of side reactions. Consequently, the electrochemical stability of protein nanofilm-modified Zn anode is greatly improved, with an excellent extended lifespan of over 1100 h at a high current density of 10 mA cm-2 and a high cycling capacity of 10 mAh cm-2 , corresponding to a high depth of discharge (83% DODZn ). Furthermore, the highly reversible Zn electrode remarkably improved the overall performance of MnO2 ||Zn full-cells.


Assuntos
Líquidos Corporais , Compostos de Manganês , Óxidos , Corrosão , Eletrodos
2.
Biomacromolecules ; 24(1): 332-343, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36562543

RESUMO

Natural fiber-reinforced biocomposites with excellent mechanical and biological properties have attractive prospects for internal medical devices. However, poor interfacial adhesion between natural silk fiber and the polymer matrix has been a disturbing issue for such applications. Herein, rigid-flexible agents, such as polydopamine (PDA) and epoxy soybean oil (ESO), were introduced to enhance the interfacial adhesion between Antheraea pernyi (Ap) silk and a common medical polymer, polycaprolactone (PCL). We compared two strategies of depositing PDA first (Ap-PDA-ESO) and grafting ESO first (Ap-ESO-PDA). The rigid-flexible interfacial agents introduced multiple molecular interactions at the silk-PCL interface. The "Ap-PDA-ESO" strategy exhibited a greater enhancement in interfacial adhesion, and interfacial toughening mechanisms were proposed. This work sheds light on engineering strong and tough silk fiber-based biocomposites for biomedical applications.


Assuntos
Polímeros , Seda , Poliésteres
3.
Biomacromolecules ; 23(9): 3928-3935, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35973042

RESUMO

The development of reliable glucose sensors for noninvasive monitoring is highly desirable and essential for diabetes detection. As a testing sample, sweat is voluminous and is easy to collect compared to blood. However, the application of sweat glucose sensors is generally limited because of their low stability and sensitivity compared to commercial glucometers. In this manuscript, a silk nanofibril (SNF)/reduced graphene oxide (RGO)/glucose oxidase (GOx) composite was developed as the working electrode of the sweat glucose sensor. The SNF/RGO/GOx composite was prepared via a facile two-step process, which involved the self-assembly of SNF from silk fibroin while reducing graphene oxide to RGO and immobilizing GOx on SNF. The SNF/RGO/GOx glucose sensor exhibited a low limit of detection (300 nM) and high sensitivity (18.0 µA/mM) in the sweat glucose range, covering both healthy people and diabetic patients (0-100 µM). Moreover, the SNF/RGO/GOx glucose sensors showed a long stability for at least 4 weeks. Finally, the SNF/RGO/GOx glucose sensor was applied to test the actual sweat samples from two volunteers and two sweating methods (by dry sauna and exercise). The results indicate the glucose data tested by the SNF/RGO/GOx glucose sensor were reliable, which correlated well to the data obtained from the commercial glucometer. Therefore, the SNF/RGO/GOx glucose sensor developed in this study may have a great potential for glucose control in personalized healthcare monitoring and chronic disease management.


Assuntos
Técnicas Biossensoriais , Grafite , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Glucose , Glucose Oxidase , Humanos , Seda , Suor , Sudorese
4.
Soft Matter ; 18(38): 7360-7368, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36124911

RESUMO

Three-dimensional (3D) bioprinting technology, allowing rapid prototyping and personalized customization, has received much attention in recent years, while regenerated silk fibroin (RSF) has also been widely investigated for its excellent biocompatibility, processibility, and comprehensive mechanical properties. However, due to the difficulty in curing RSF aqueous solution and the tendency of conformational transition of RSF chains under shearing, it is rather complicated to fabricate RSF-based materials with high mechanical strength through extrusion bioprinting. To solve this problem, a printable hydrogel with thixotropy was prepared from regenerated silk fibroin with high-molecular-weight (HMWRSF) combined with a small amount of hydroxypropyl methylcellulose (HPMC) in urea containing aqueous solution. It was found that the introduction of urea could not only vary the solid content of the hydrogel to benefit the mechanical properties of the 3D-bioprinted pre-cured hydrogels or 3D-bioprinted sponges, but also expand the "printable window" of this system. Indeed, the printability and rheological properties could be modulated by varying the solid content, the heating time, the urea/HMWRSF weight ratio, etc. Moreover, the microstructure of nanospheres stacked in these lyophilized 3D-bioprinted sponges was interesting to observe, which indicated the existence of microhydrogels and both "the reversible network" and "the irreversible network" in this HMWRSF-based pre-cured hydrogel. Like other HMWRSF materials fabricated in other ways, these 3D-bioprinted HMWRSF-based sponges exhibited good cytocompatibility for dental pulp mesenchymal stem cells. This work may inspire the design of functional HMWRSF-based materials by regulating the relationship between structure and properties.


Assuntos
Bioimpressão , Fibroínas , Bioimpressão/métodos , Fibroínas/química , Hidrogéis/química , Derivados da Hipromelose , Impressão Tridimensional , Reologia , Seda , Engenharia Tecidual/métodos , Alicerces Teciduais/química
5.
Biomacromolecules ; 22(5): 2189-2196, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33852291

RESUMO

Mechanical training is an operation where a sample is cyclically stretched in a solvent. It is accepted as an effective strategy to strengthen and stiffen the highly hydrated silk materials (HHSMs). However, the detailed reinforcement mechanism of the process still remains to be understood. Herein, this process is studied by the integration of experimental characterization and theoretical analysis. The results from time-resolved Fourier transform infrared spectroscopy and real-time birefringent characterization reveal that the silk proteins rapidly formed a molecular cross-linking network (MCN) during the mechanical training. The cross-links were the ß-sheet nanocrystals generated from the conformation transition of silk proteins. With the progress in mechanical training, these MCNs gradually remodeled to a highly oriented molecular network structure. The final structure of the silk proteins in HHSMs is highly similar to the structural organization of silk proteins in the natural animal silk. The training process significantly improved the mechanical strength and modulus of the material. With regards to the dynamic behavior of conformation transition and MCN orientation, the structural evaluation of silk proteins during mechanical training was divided into three distinct stages, namely, the MCN-forming stage, MCN-orienting stage, and oriented-MCN stage. Such division is in complete agreement with the three-stage viscoelastic behavior observed in the cyclic loading and unloading tests. Hence, a five-parameter viscoelastic model has been established to elucidate the structure-property relationship of these three stages. This work improves in-depth understanding of the fundamental issues related to structure-property relationships of HHSMs and thus provides inspiration and guidance in the design of soft silk functional materials.


Assuntos
Fibroínas , Seda , Animais , Hidrogéis , Estrutura Molecular , Conformação Proteica em Folha beta , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Biomacromolecules ; 21(12): 5306-5314, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33206498

RESUMO

Spider dragline silk is well-known for its excellent combination of strength and extensibility as well as another unique property called supercontraction. In our previous work, the changes in conformations of the Nephila edulis spider dragline silk when subjected to different supercontraction processes were extensively investigated. When a native spider dragline silk had free supercontraction, and then restretched to its original length, the content and molecular orientation of different conformations (ß-sheet, helix, and random coil) changed but the mechanical properties remained almost the same. Therefore, herein, further supercontraction-stretching treatment was performed up to three cycles, and the corresponding structural changes were investigated. In addition to the synchrotron radiation FTIR (S-FTIR) microspectroscopy employed in our previous study, synchrotron radiation small-angle X-ray scattering (S-SAXS) and atomic force microscopy (AFM) were also used in this work to determine the structural changes of spider dragline silk in different scales. The results show that by repeating the supercontraction-stretching treatment, the ß-sheet structure content in spider dragline silk was slightly increased, but its orientation degree remained almost the same. Also, with the increase in cycle of supercontraction-stretching treatments, a 10.5 nm long period perpendicular to the silk fiber axis gradually appeared, endowing the spider dragline silk with periodic structure both along (6.6 nm, already existed in native silk and did not change with the supercontraction-stretching treatment) and perpendicular to the silk fiber axis. After the third supercontraction-stretching cycle, the AFM images displayed a clear 210 nm × 80 nm corn kernel-like structure on the surface of nanofibrils in spider dragline silks, which may be related to the aggregation of 10.5 nm × 6.6 nm periodic structure observed via S-SAXS. Finally, although the structure of spider dragline silk became increasingly regular with the rise in supercontraction-stretching cycles, mechanical properties remained constant after every cycle of the supercontraction-stretching treatment. These findings can aid in further understanding the structural changes that are related to the supercontraction of spider dragline silk and provide useful guidance in fabrication of high-performance regenerated or artificial silk fibers.


Assuntos
Seda , Aranhas , Animais , Espalhamento a Baixo Ângulo , Difração de Raios X
7.
Biomacromolecules ; 21(4): 1596-1603, 2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-32159952

RESUMO

With the increasing demand for comfort, thinness, and warmth of fabrics, various functional fibers have emerged. However, natural silkworm silk, as one of the most widely used natural fibers in textile, faces the issue that it cannot be modified during the spinning process like synthetic fibers. Herein, copper sulfide nanoparticles (CuS NPs) with a near-infrared (NIR) absorption property were first prepared by using regenerated silk fibroin (RSF) as the biological template. Then, trace CuS NPs prepared in RSF solution (no more than 100 ppm) were added into the RSF spinning dope to prepare colorless RSF/CuS hybrid fibers via wet-spinning process. The tensile test of the RSF/CuS hybrid fibers showed that the toughness was improved with the addition of CuS NPs, which completely met the requirements of textile development. The temperature of RSF/CuS hybrid fiber bundles could increase 18.5 °C within 3 min under 1064 nm laser irradiation with power density of 1.0 W/cm2. Finally, these RSF/CuS hybrid fiber bundles were woven into silk fabric or embroidered on a cotton fabric. Under the simulated sunlight, the temperature of RSF/CuS fabric could increase to more than 40 °C from room temperature. Also, as per the infrared images, the pattern of embroidery displayed a significant difference in temperature increase as compared to cotton matrix. Based on these results, an almost colorless RSF/CuS hybrid fiber that can be mass produced by wet spinning may have great potential in the fabrication of dyeable, light, and comfortable silk functional fabric with spontaneous heating characteristics under sunlight.


Assuntos
Fibroínas , Seda , Cobre , Calefação , Sulfetos , Luz Solar , Têxteis
8.
J Am Chem Soc ; 141(13): 5314-5325, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30860834

RESUMO

The origin of the near-infrared photoluminescence (PL) from thiolate-protected gold nanoclusters (Au NCs, <2 nm) has long been controversial, and the exact mechanism for the enhancement of quantum yield (QY) in many works remains elusive. Meanwhile, based upon the sole steady-state PL analysis, it is still a major challenge for researchers to map out a definitive relationship between the atomic structure and the PL property and understand how the Au(0) kernel and Au(I)-S surface contribute to the PL of Au NCs. Herein, we provide a paradigm study to address the above critical issues. By using a correlated series of "mono-cuboctahedral kernel" Au NCs and combined analyses of steady-state, temperature-dependence, femtosecond transient absorption, and Stark spectroscopy measurements, we have explicitly mapped out a kernel-origin mechanism and clearly elucidate the surface-structure effect, which establishes a definitive atomic-level structure-emission relationship. A ∼100-fold enhancement of QY is realized via suppression of two effects: (i) the ultrafast kernel relaxation and (ii) the surface vibrations. The new insights into the PL origin, QY enhancement, wavelength tunability, and structure-property relationship constitute a major step toward the fundamental understanding and structural-tailoring-based modulation and enhancement of PL from Au NCs.


Assuntos
Ouro/química , Luminescência , Nanopartículas Metálicas/química , Estrutura Molecular , Processos Fotoquímicos , Teoria Quântica
9.
Langmuir ; 35(20): 6640-6649, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31041860

RESUMO

The conformation and stability of zein in solution are closely associated with its solvation process and influence the mechanical properties of the related zein-based materials. In this work, a common solvent dimethyl sulfoxide (DMSO) was used to dissolve zein, rather than solvents frequently used such as aqueous ethanol and acetic acid. It was found that DMSO could dissolve zein readily and the solution was stable for at least 2 weeks. Rheological analysis and small-angle X-ray scattering (SAXS) were employed to characterize the zein DMSO solution. Results of rheological analysis suggested a Huggins coefficient of 0.24, indicating DMSO to be a good solvent for zein. SAXS results revealed that zein adopted an elongated conformation and had dimensions of 2.8 nm × 2.8 nm × 14.8 nm in DMSO solution. Moreover, robust zein films were fabricated from zein DMSO solutions. The content of residual DMSO in the films was determined to be approximately 15 wt % by thermogravimetric analysis, in consistence with the value obtained by other two methods. The film showed a large breaking strain of 320.6% with a considerable breaking stress of 1.9 MPa, yielding a breaking energy of 376.2 MJ/m3. Therefore, the ease of dissolution and good mechanical performance of the final zein-based material make DMSO a potential solvent for fabrication of zein materials, thereby improving the scope of practical applications of zein.

10.
Nano Lett ; 18(12): 7485-7493, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30444622

RESUMO

Intrinsically multimodal nanomaterials have revealed their great potential as a new class of contrast agents. We herein report a bandgap engineering strategy to develop an intrinsically Raman-photoacoustic (PA) active probe that is based on semiconducting conjugated polymers. This dual modal probe is prepared by doping a semiconducting conjugated polymer with polydopamine (PDA) through a one-pot reaction. When applied in the polypyrrole (PPy), this strategy can enhance Raman scattering and the PA amplitude of PPy-PDA hybrid by 3.2 and 2.4 times, respectively, so that both signals can be further applied in bioimaging. In the hybrid, such a dual-enhancement effect is achieved by infusing these two macromolecules at the nanoscale to reduce the optical bandgap energy. This work not only introduces a dual modal contrast agent but also provides a new method of manipulating semiconducting polymer's inherent optical features for bioimaging.


Assuntos
Meios de Contraste/química , Indóis/química , Nanopartículas/química , Polímeros/química , Pirróis/química , Animais , Transporte de Elétrons , Células HeLa , Humanos , Camundongos , Técnicas Fotoacústicas/métodos , Semicondutores , Análise Espectral Raman/métodos
11.
Biomacromolecules ; 19(6): 1999-2006, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29401377

RESUMO

Like most major ampullate silks of spider, the length of Antheraea pernyi silkworm silk can shrink to a certain degree when the fiber is in contact with water. However, what happens in terms of molecule chain level and how it correlates to the mechanical properties of the silk during its contraction is not yet fully understood. Here, we investigate the water-induced mechanical property changes as well as the structure transition of two kinds of A. pernyi silk fiber, which are forcibly reeled from two different individuals (silkworm a and silkworm b; the silk fiber from either one represents the lower and upper limit of the distribution of mechanical properties, respectively). The tensile test results present that most of the mechanical parameters except the post-yield modulus and breaking strain for both silk fibers have the same variation trend before and after their water contraction. Synchrotron FTIR and Raman spectra show that the native filament from silkworm a contains more α-helix structures than that in silkworm b filament, and these α-helices are partially converted to ß-sheet structures after the contraction of the fibers, while the order of both ß-sheet and α-helix slightly increase. On the other side, the content and orientation of both secondary structural components in silkworm b fiber keep unchanged, no matter if it is native or contracted. 13C CP/MAS NMR results further indicate that the α-helix/random coil to ß-sheet conformational transition that occurred in the silk of silkworm a corresponds the Ala residues. Based upon these results, the detailed structure transition models of both as-reeled A. pernyi silk fibers during water contraction are proposed finally to interpret their properties transformation.


Assuntos
Lepidópteros/química , Seda/química , Animais , Fenômenos Biomecânicos , Isótopos de Carbono/química , Espectroscopia de Ressonância Magnética , Modelos Químicos , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Resistência à Tração , Água/química
12.
Phys Chem Chem Phys ; 20(17): 11643-11648, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29670960

RESUMO

Although far-infrared (IR) spectroscopy has been shown to be a powerful tool to determine peptide structure and to detect structural transitions in peptides, it has been overlooked in the characterization of proteins. Herein, we used far-IR spectroscopy to monitor the structure of four abundant non-bioactive proteins, namely, soybean protein isolate (SPI), pea protein isolate (PPI) and two types of silk fibroins (SFs), domestic Bombyx mori and wild Antheraea pernyi. The two globular proteins SPI and PPI result in broad and weak far-IR bands (between 50 and 700 cm-1), in agreement with those of some other bioactive globular proteins previously studied (lysozyme, myoglobin, hemoglobin, etc.) that generally only have random amino acid sequences. Interestingly, the two SFs, which are characterized by a structure composed of highly repetitive motifs, show several sharp far-IR characteristic absorption peaks. Moreover, some of these characteristic peaks (such as the peaks at 260 and 428 cm-1 in B. mori, and the peaks at 245 and 448 cm-1 in A. pernyi) are sensitive to conformational changes; hence, they can be directly used to monitor conformational transitions in SFs. Furthermore, since SF absorption bands clearly differ from those of globular proteins and different SFs even show distinct adsorption bands, far-IR spectroscopy can be applied to distinguish and determine the specific SF component within protein blends.


Assuntos
Modelos Moleculares , Proteínas/química , Espectrofotometria Infravermelho , Animais , Estrutura Terciária de Proteína
13.
Langmuir ; 33(32): 7957-7967, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28732169

RESUMO

Designed peptide surfactants offer a number of advanced properties over conventional petrochemical surfactants, including biocompatibility, sustainability, and tailorability of the chemical and physical properties through peptide design. Their biocompatibility and degradability make them attractive for various applications, particularly for food and pharmaceutical applications. In this work, two new peptide surfactants derived from an amphiphilic peptide surfactant (AM1) were designed (AM-S and C8-AM) to better understand links between structure, interfacial activity, and emulsification. Based on AM1, which has an interfacial α-helical structure, AM-S and C8-AM were designed to have two modules, that is, the α-helical AM1 module and an additional hydrophobic moiety to provide for better anchoring at the oil-water interface. Both AM-S and C8-AM at low bulk concentration of 20 µM were able to adsorb rapidly at the oil-water interface and reduced interfacial tension to equilibrium values of 17.0 and 8.4 mN/m within 400 s, respectively. Their relatively quick adsorption kinetics allowed the formation of nanoemulsions with smaller droplet sizes and narrower size distribution. AM-S and C8-AM at 800 µM bulk concentration could make nanoemulsions of average diameters 180 and 147 nm, respectively, by simple sonication. With respect to the long-term stability, a minimum peptide concentration of 400 µM for AM-S and a lower concentration of 100 µM for C8-AM were demonstrated to effectively stabilize nanoemulsions over 3 weeks. Compared to AM1, the AM-S nanoemulsion retained its stimuli-responsive function triggered by metal ions, whereas the C8-AM nanoemulsions did not respond to the stimuli as efficiently as AM-S because of the strong anchoring ability of the hydrophobic C8 module. The two-module design of AM-S and C8-AM represents a new strategy in tuning the surface activity of peptide surfactants, offering useful information and guidance of future designs.


Assuntos
Peptídeos/química , Adsorção , Tensão Superficial , Tensoativos , Água
14.
Soft Matter ; 12(2): 492-9, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26481909

RESUMO

The chitosan (CS)/ß-glycerol phosphate (GP) system is a heat induced gelling system with a promising potential application, such as an injectable biomedical material. Unlike most thermosensitive gelling systems, the CS/GP system is only partially reversible. That is once the hydrogel is fully matured, it only softens but cannot go back to its initial liquid state when cooled down. Here, we perform both the small and large amplitude oscillatory shear (SAOS and LAOS) tests on the fully matured CS/GP hydrogel samples at a variety of temperatures within the cooling process. The purpose of such tests is to investigate the structural change of the hydrogel network and thus to understand the possible gelation mechanism of this unique thermosensitive hydrogel. From the LAOS results and the further analysis with the Chebyshev expansion method, it shows that the CS/GP hydrogel is composed of a colloidal network dominated by hydrophobic interactions at high temperature, and gradually turns into a flexible network dominated by hydrogen bonding when the temperature goes down. Therefore, we may conclude that LOAS is a powerful tool to study the nonlinear behaviour of a polymer system that is closely related to its structure, and as a practical example, we achieve a clearer vision on the gelation mechanism of the unique CS/GP thermosensitive hydrogel on the basis of considerable previous studies and assumptions in this laboratory and other research groups.


Assuntos
Quitosana/química , Glicerofosfatos/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Temperatura , Reologia
15.
Soft Matter ; 12(27): 5926-36, 2016 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-27320178

RESUMO

Silks are a family of semi-crystalline structural materials, spun naturally by insects, spiders and even crustaceans. Compared to the characteristic ß-sheet crystalline structure in silks, the non-crystalline structure and its composition deserves more attention as it is equally critical to the filaments' high toughness and strength. Here we further unravel the structure-property relationship in silks using Dynamic Mechanical Thermal Analysis (DMTA). This technique allows us to examine the most important structural relaxation event of the disordered structure the disordered structure, the glass transition (GT), in native silk fibres of the lepidopteran Bombyx mori and Antheraea pernyi and the spider Nephila edulis. The measured glass transition temperature Tg, loss tangent tan δ and dynamic storage modulus are quantitatively modelled based on Group Interaction Modelling (GIM). The "variability" issue in native silks can be conveniently explained by the different degrees of structural disorder as revealed by DMTA. The new insights will facilitate a more comprehensive understanding of the structure-property relations for a wide range of biopolymers.

16.
Artif Organs ; 40(4): 385-93, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26526301

RESUMO

Artificial ligaments utilized in reconstruction of anterior cruciate ligament (ACL) are usually made of polyethylene terepthalate (PET) because of its good mechanical properties in vivo. However, it was found that the deficiencies in hydrophilicity and biocompatibility of PET hindered the process of ligamentization. Therefore, surface modification of the PET is deemed as a solution in resolving such problem. Silk fibroin (SF), which is characterized by good biocompatibility and low immunogenicity in clinical applications, was utilized to prepare a coating on the PET ligament (PET+SF) in this work. At first, decrease of hydrophobicity and appearance of amino groups were found on the surface of artificial PET ligament after coating with SF. Second, mouse fibroblasts were cultured on the two different kinds of ligament in order to clarify the possible effect of SF coating. It was proved that mouse fibroblasts display better adhesion and proliferation on PET+SF than PET ligament according to the results of several technical methods including SEM observation, cell adhesive force and spread area test, and mRNA analysis. Meanwhile, methylthiazolyldiphenyl-tetrazolium bromide and DNA content tests showed that biocompatibility of PET+SF is better than PET ligament. In addition, collagen deposition tests also indicated that the quantity of collagen in PET+SF is higher than PET ligament. Based on these results, it can be concluded that SF coating is suggested to be an effective approach to modify the surface of PET ligament and enhance the "ligamentization" process in vivo accordingly.


Assuntos
Materiais Revestidos Biocompatíveis/farmacologia , Fibroblastos/citologia , Fibroínas/farmacologia , Ligamentos , Polietilenotereftalatos/farmacologia , Animais , Adesão Celular/fisiologia , Proliferação de Células/fisiologia , Teste de Materiais , Camundongos
17.
J Am Chem Soc ; 136(44): 15781-6, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25325188

RESUMO

Mesocrystals with the symmetry defying morphologies and highly ordered superstructures composed of primary units are of particular interest, but the fabrication has proved extremely challenging. A novel strategy based on biomineralization approach for the synthesis of hematite mesocrystals is developed by using silk fibroin as a biotemplate. The resultant hematite mesocrystals are uniform, highly crystalline, and porous nanostructures with tunable size and morphologies by simply varying the concentration of the silk fibroin and iron(III) chloride in this biomineralization system. In particular, we demonstrate a complex mesoscale biomineralization process induced by the silk fibroin for the formation of hematite mesocrystals. This biomimetic strategy features precisely tunable, high efficiency, and low-cost and opens up an avenue to access new novel functional mesocrystals with hierarchical structures in various practical applications.

18.
Soft Matter ; 10(33): 6321-31, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25030083

RESUMO

Variability is a common feature of natural silk fibres, caused by a range of natural processing conditions. Better understanding of variability will not only be favourable for explaining the enviable mechanical properties of animal silks but will provide valuable information for the design of advanced artificial and biomimetic silk-like materials. In this work, we have investigated the origin of variability in forcibly reeled Antheraea pernyi silks from different individuals using dynamic mechanical thermal analysis (DMTA) combined with the effect of polar solvent penetration. Quasi-static tensile curves in different media have been tested to show the considerable variability of tensile properties between samples from different silkworms. The DMTA profiles (as a function of temperature or humidity) through the glass transition region of different silks as well as dynamic mechanical properties after high temperature and water annealing are analysed in detail to identify the origin of silk variability in terms of molecular structures and interactions, which indicate that different hydrogen bonded structures exist in the amorphous regions and they are notably different for silks from different individuals. Solubility parameter effects of solvents are quantitatively correlated with the different glass transitions values. Furthermore, the overall ordered fraction is shown to be a key parameter to quantify the variability in the different silk fibres, which is consistent with DMTA and FTIR observations.


Assuntos
Seda/química , Animais , Simulação por Computador , Umidade , Ligação de Hidrogênio , Teste de Materiais , Fenômenos Mecânicos , Estrutura Molecular , Mariposas , Solubilidade , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Temperatura , Resistência à Tração
19.
Pharm Res ; 31(4): 895-907, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24100950

RESUMO

PURPOSE: The structure-function relationship and mechanism of polycations as gene carriers have attracted considerable research interest in recent years. The present study was to investigate the relationship between polycation chain length and transfection efficiency (RCL-TE), and the corresponding mechanism by O-methyl-free N,N,N-trimethyl chitosans (TMCs) as gene carriers. METHODS: Four TMCs with various chain lengths were synthesized and used to evaluate the RCL-TE. To investigate the details of RCL-TE, a number of factors such as cytotoxicity, cellular uptake efficiency, cellular uptake pathway and intracellular trafficking, were evaluated. RESULTS: In comparison to short chain length TMCs (S-TMCs), long chain length ones (L-TMCs) mediated higher gene expression. The polyplexes formed by L-TMCs and pDNA showed higher stability. The cellular uptake pathway and intracellular trafficking of these TMC/pDNA polyplexes were different. These above factors are probably the key ones in RCL-TE rather than polycation-DNA binding affinity, polyplex particle size in water, zeta potential, serum, cytotoxicity, and cellular uptake efficiency. CONCLUSIONS: For rational design of chitosan-based polycations as gene carriers, polycations with relative long chain lengths are more favorable and more attention should be paid to polyplex stability, function of uncomplexed polycation chains, cellular uptake pathway, and intracellular trafficking.


Assuntos
Quitosana/química , Técnicas de Transferência de Genes , Poliaminas/química , Transfecção/métodos , Animais , Células COS , Chlorocebus aethiops , Polieletrólitos
20.
Phys Chem Chem Phys ; 16(17): 7741-8, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24638262

RESUMO

Fourier transform infrared (FTIR) and scanning transmission X-ray microscopy (STXM) spectroscopic imaging techniques are introduced to determine the structure of protein-based polymer blends, using the silk fibroin/polyethylene oxide (SF/PEO) blend as a model material. We demonstrate that FTIR and STXM imaging techniques provide complementary chemical sensitivities, resolution ranges and sample thickness requirements that can enable a greater understanding of SF/PEO blend films. From the FTIR images, we find that SF shows random coil and/or helical conformation in the SF-rich domains, and ß-sheet conformation in the PEO-rich matrix. In the meantime, the SF content in SF-rich domains is 74 ± 4%, and 38 ± 6% in the PEO-rich matrix from the STXM images. These findings support and give further evidence to the conclusions of the previous studies on SF/PEO blends in the literature. Our results strongly suggest that FTIR and STXM imaging techniques are two promising complementary approaches for the study of phase behaviour and molecular conformation in protein-based polymer blend materials.


Assuntos
Bombyx/química , Fibroínas/química , Polietilenoglicóis/química , Animais , Microanálise por Sonda Eletrônica , Transição de Fase , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA