Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(2): 1246-1261, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38305191

RESUMO

Preserving stable tooth-periodontal tissue integration is vital for maintaining alveolar bone stability under physiological conditions. However, tooth extraction compromises this integration and impedes socket healing. Therefore, it becomes crucial to provide early stage coverage of the socket to promote optimal healing. Drawing inspiration from the periodontium, we have developed a quaternized methacryloyl chitosan/dopamine-grafted oxidized sodium alginate hydrogel, termed the quaternized methacryloyl chitosan/dopamine-grafted oxidized sodium alginate hydrogel (QDL hydrogel). Through blue-light-induced cross-linking, the QDL hydrogel serves as a comprehensive wound dressing for socket healing. The QDL hydrogel exhibits remarkable efficacy in closing irregular tooth extraction wounds. Its favorable mechanical properties, flexible formability, and strong adhesion are achieved through modifications of chitosan and sodium alginate derived from biomass sources. Moreover, the QDL hydrogel demonstrates a superior hemostatic ability, facilitating swift blood clot formation. Additionally, the inherent antibacterial properties of the QDL hydrogel effectively inhibit oral microorganisms. Furthermore, the QDL hydrogel promotes angiogenesis, which facilitates the nutrient supply for subsequent tissue regeneration. Notably, the hydrogel accelerates socket healing by upregulating the expression of genes associated with wound healing. In conclusion, the periodontium-mimicking multifunctional hydrogel exhibits significant potential as a clinical tooth extraction wound dressing.


Assuntos
Quitosana , Hidrogéis , Hidrogéis/farmacologia , Biomassa , Quitosana/farmacologia , Dopamina , Periodonto , Alginatos/farmacologia , Antibacterianos/farmacologia
2.
Dis Model Mech ; 17(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38721692

RESUMO

Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, resulting in the loss of dystrophin, a large cytosolic protein that links the cytoskeleton to extracellular matrix receptors in skeletal muscle. Aside from progressive muscle damage, many patients with DMD also have neurological deficits of unknown etiology. To investigate potential mechanisms for DMD neurological deficits, we assessed postnatal oligodendrogenesis and myelination in the Dmdmdx mouse model. In the ventricular-subventricular zone (V-SVZ) stem cell niche, we found that oligodendrocyte progenitor cell (OPC) production was deficient, with reduced OPC densities and proliferation, despite a normal stem cell niche organization. In the Dmdmdx corpus callosum, a large white matter tract adjacent to the V-SVZ, we also observed reduced OPC proliferation and fewer oligodendrocytes. Transmission electron microscopy further revealed significantly thinner myelin, an increased number of abnormal myelin structures and delayed myelin compaction, with hypomyelination persisting into adulthood. Our findings reveal alterations in oligodendrocyte development and myelination that support the hypothesis that changes in diffusion tensor imaging seen in patients with DMD reflect developmental changes in myelin architecture.


Assuntos
Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne , Bainha de Mielina , Oligodendroglia , Animais , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/genética , Proliferação de Células , Distrofina/metabolismo , Distrofina/deficiência , Distrofina/genética , Corpo Caloso/patologia , Corpo Caloso/metabolismo , Camundongos Endogâmicos C57BL , Camundongos , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/patologia , Ventrículos Laterais/patologia , Ventrículos Laterais/metabolismo , Modelos Animais de Doenças , Diferenciação Celular , Masculino
3.
Adv Healthc Mater ; 13(9): e2303293, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38060135

RESUMO

Invasion of bacteria and continuous oozing of exudate are significant causes of interference with the healing of infected wounds. Therefore, an exudate-induced gelatinizable and near-infrared (NIR)-responsive nanofiber membrane composed of polyvinyl alcohol (PVA), carboxymethyl chitosan (CMC), and Fe-doped phosphomolybdic acid (Fe-PMA) with exceptional exudate absorption capacity and potent bactericidal efficacy is developed and denoted as the PVA-FP-CMC membrane. After absorbing exudate, the fiber membrane can transform into a hydrogel membrane, forming coordination bonds between the Fe-PMA and CMC. The unique exudate-induced gelation process imparts the membrane with high exudate absorption and retention capability, and the formed hydrogel also traps the bacteria that thrive in the exudate. Moreover, it is discovered for the first time that the Fe-PMA exhibits an enhanced photothermal conversion capability and photocatalytic activity compared to the PMA. Therefore, the presence of Fe-PMA provides the membrane with a photothermal and photodynamic therapeutic effect for killing bacteria. The PVA-FP-CMC membrane is proven with a liquid absorption ratio of 520.7%, a light-heat conversion efficiency of 41.9%, high-level generation of hydroxyl radical (•OH) and singlet oxygen (1O2), and a bacterial killing ratio of 100% for S. aureus and 99.6% for E. coli. The treatment of infected wounds on the backs of rats further confirms the promotion of wound healing by the PVA-FP-CMC membrane with NIR irradiation. Overall, this novel functional dressing for the synergistic management of bacteria-infected wounds presents a promising therapeutic strategy for tissue repair and regeneration.


Assuntos
Nanofibras , Infecção dos Ferimentos , Ratos , Animais , Nanofibras/uso terapêutico , Nanofibras/química , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Álcool de Polivinil/farmacologia , Álcool de Polivinil/química , Infecção dos Ferimentos/tratamento farmacológico , Hidrogéis/química , Exsudatos e Transudatos
4.
Bioact Mater ; 20: 561-573, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35846841

RESUMO

Neovascularization is critical to improve the diabetic microenvironment, deliver abundant nutrients to the wound and promote wound closure. However, the excess of oxidative stress impedes the healing process. Herein, a self-adaptive multifunctional hydrogel with self-healing property and injectability is fabricated through a boronic ester-based reaction between the phenylboronic acid groups of the 3-carboxyl-4-fluorophenylboronic acid -grafted quaternized chitosan and the hydroxyl groups of the polyvinyl alcohol, in which pro-angiogenic drug of desferrioxamine (DFO) is loaded in the form of gelatin microspheres (DFO@G). The boronic ester bonds of the hydrogel can self-adaptively react with hyperglycemic and hydrogen peroxide to alleviate oxidative stress and release DFO@G in the early phase of wound healing. A sustained release of DFO is then realized by responding to overexpressed matrix metalloproteinases. In a full-thickness diabetic wound model, the DFO@G loaded hydrogel accelerates angiogenesis by upregulating expression of hypoxia-inducible factor-1 and angiogenic growth factors, resulting in collagen deposition and rapid wound closure. This multifunctional hydrogel can not only self-adaptively change the microenvironment to a pro-healing state by decreasing oxidative stress, but also respond to matrix metalloproteinases to release DFO. The self-adaptive multifunctional hydrogel has a potential for treating diabetic wounds.

5.
Carbohydr Polym ; 187: 85-93, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29486848

RESUMO

Sodium alginate (SA) beads with ultrahigh adsorption capacity were prepared via hydrogen bonds between SA and 2-acrylamido-2-methylpropa-1-propanesulfonic acid (AMPS), and the AMPS was then post-cross-linked to manufacture SA/PAMPS beads. The equilibrium adsorption capacities of methylene blue (MB) and Pb2+ for the SA/PAMPS10 beads were 2977 and 2042 mg/g, respectively. Although the SA beads exhibited higher equilibrium adsorption capacities of MB and Pb2+ than those of the SA/PAMPS10 beads, the SA/PAMPS10 beads had better mechanical property and higher stability. The pseudo-second-order kinetic model and the Langmuir isotherm described the adsorption processes of the SA/PAMPS10 beads for MB well. In addition, the SA/PAMPS10 beads could be reused with stable adsorption capacity for at least three cycles. The beads also had excellent performances on absorbing methylene violet and other heavy metal ions (Cu2+, Cd2+ and Ni2+). Therefore, the SA-based beads with high adsorption capacity might be good candidates for industrial pollutant treatments.


Assuntos
Alginatos/química , Cátions/química , Corantes/química , Adsorção , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Concentração de Íons de Hidrogênio , Cinética , Metais Pesados/química , Poluentes Químicos da Água , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA