Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biogerontology ; 25(3): 507-528, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38150086

RESUMO

Worldwide the aging population continues to increase, so the concept of healthy longevity medicine has become increasingly significant in modern society. Berberis vulgaris L. fruits serve as a functional food supplement with a high concentration of bioactive compounds, which offer numerous health-promoting benefits. The goal of this study was to investigate the geroprotective effect of Berberis vulgaris L. extract. Here we show that extract of Berberis vulgaris L. can, depending on concentrate, increases lifespan up to 6%, promote healthspan (stress resistance up to 35%, locomotor activity up to 25%, integrity of the intestinal barrier up to 12%, metabolic rate up to 5%) of Drosophila melanogaster (in vitro) and exhibits antioxidant (using red blood cell tests) and antiglycation activity (using glycation of bovine serum albumin) (in vitro). In addition to this, the extract does not exhibit cytotoxic properties in vitro, unlike the well-known polyphenolic compound quercetin. qRT-PCR has revealed the involvement of metabolic, heat shock response and lipid metabolism genes in the observed effects.


Assuntos
Antioxidantes , Berberis , Suplementos Nutricionais , Drosophila melanogaster , Longevidade , Extratos Vegetais , Animais , Antioxidantes/farmacologia , Longevidade/efeitos dos fármacos , Extratos Vegetais/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/fisiologia , Masculino , Feminino , Fatores Sexuais
2.
Biogerontology ; 24(2): 275-292, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36662374

RESUMO

Hydrogen sulfide (H2S) is one of the most important gasotransmitters that affect lifespan and provide resistance to adverse environmental conditions. Here we investigated geroprotective effects of the individual and simultaneous overexpression of genes encoding key enzymes of H2S biosynthesis - cystathionine-ß-synthase (CBS) and cystathionine-γ-lyase (CSE) on D. melanogaster model. Simultaneous overexpression of CBS and CSE resulted in additive (in males) and synergistic (in females) beneficial effects on median lifespan. Individual overexpression of CBS was associated with increased thermotolerance and decreased transcription level of genes encoding stress-responsive transcription factors HIF1 and Hsf, while individual overexpression of CSE was associated with increased resistance to paraquat. Simultaneous overexpression of both genes increased resistance to hyperthermia in old females or paraquat in old males. The obtained results suggest sex-specific epistatic interaction of CBS and CSE overexpression effects on longevity and stress resistance.


Assuntos
Cistationina beta-Sintase , Sulfeto de Hidrogênio , Masculino , Animais , Feminino , Cistationina beta-Sintase/genética , Drosophila melanogaster , Cistationina , Paraquat
3.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983079

RESUMO

The transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are the main downstream effectors of the evolutionarily conserved Hippo signaling pathway. YAP/TAZ are implicated in the transcriptional regulation of target genes that are involved in a wide range of key biological processes affecting tissue homeostasis and play dual roles in the aging process, depending on the cellular and tissue context. The aim of the present study was to investigate whether pharmacological inhibitors of Yap/Taz increase the lifespan of Drosophila melanogaster. Real-time qRT-PCR was performed to measure the changes in the expression of Yki (Yorkie, the Drosophila homolog of YAP/TAZ) target genes. We have revealed a lifespan-increasing effect of YAP/TAZ inhibitors that was mostly associated with decreased expression levels of the wg and E2f1 genes. However, further analysis is required to understand the link between the YAP/TAZ pathway and aging.


Assuntos
Antineoplásicos , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Transativadores/genética , Transativadores/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Sinalização YAP , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Drosophila/metabolismo
4.
Int J Mol Sci ; 24(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240439

RESUMO

Torin-2, a synthetic compound, is a highly selective inhibitor of both TORC1 and TORC2 (target of rapamycin) complexes as an alternative to the well-known immunosuppressor, geroprotector, and potential anti-cancer natural compound rapamycin. Torin-2 is effective at hundreds of times lower concentrations and prevents some negative side effects of rapamycin. Moreover, it inhibits the rapamycin-resistant TORC2 complex. In this work, we evaluated transcriptomic changes in D. melanogaster heads induced with lifetime diets containing Torin-2 and suggested possible neuroprotective mechanisms of Torin-2. The analysis included D. melanogaster of three ages (2, 4, and 6 weeks old), separately for males and females. Torin-2, taken at the lowest concentration being tested (0.5 µM per 1 L of nutrient paste), had a slight positive effect on the lifespan of D. melanogaster males (+4% on the average) and no positive effect on females. At the same time, RNA-Seq analysis revealed interesting and previously undiscussed effects of Torin-2, which differed between sexes as well as in flies of different ages. Among the cellular pathways mostly altered by Torin-2 at the gene expression level, we identified immune response, protein folding (heat shock proteins), histone modification, actin cytoskeleton organization, phototransduction and sexual behavior. Additionally, we revealed that Torin-2 predominantly reduced the expression of Srr gene responsible for the conversion of L-serine to D-serine and thus regulating activity of NMDA receptor. Via western blot analysis, we showed than in old males Torin-2 tends to increase the ratio of the active phosphorylated form of ERK, the lowest node of the MAPK cascade, which may play a significant role in neuroprotection. Thus, the complex effect of Torin-2 may be due to the interplay of the immune system, hormonal background, and metabolism. Our work is of interest for further research in the field of NMDA-mediated neurodegeneration.


Assuntos
Drosophila melanogaster , Serina-Treonina Quinases TOR , Masculino , Animais , Feminino , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transcriptoma , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Sirolimo/farmacologia , Sistema Nervoso Central/metabolismo
5.
Biogerontology ; 23(2): 215-235, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35122571

RESUMO

Honeysuckle Lonicera pallasii (Lonicera caerulea L.) is an excellent source of anthocyanins which have a number of health-promoting properties mainly associated with antioxidant and anti-inflammatory activities. Cyanidin-3-O-glucoside (C3G) is one of the most common anthocyanins naturally found in honeysuckle. The goal of the present study was to investigate antioxidant and anti-aging properties of Lonicera pallasii (Lonicera caerulea L.) extract (LE) and C3G using red blood cells (RBC) and Drosophila melanogaster models. LE and C3G treatment at a concentration of 100 µM induced enhancement of median and maximum lifespan up to 8%. LE and C3G supplementation at a concentration of 100 µM increased stress resistance up to 10%. The locomotor activity decreased during LE and C3G treatment in 4 and 6 weeks up to 52% in females. The integrity of the intestinal barrier was increased by 4% after LE treatment. These effects were accompanied by increased expression of Hif1 (pro-longevity gene) in response to C3G treatment and decreased expression of Keap1 (anti-longevity gene) after C3G and LE supplementation. RNA interference-mediated knockdown of Sirt6 completely abolished the positive effect obtained of LE and C3G supplementation in males which indicates that lifespan-extending effect is associated with Sirt6 activation. The experiments on the various in-vitro models (including radical scavenging activity and oxidative hemolysis of RBC demonstrated antioxidant and membrane-protective activities of LE and C3G. The present study indicates that Lonicera extract can prolong the lifespan and improve the healthspan of Drosophila model through biological and antioxidant activities.


Assuntos
Lonicera , Sirtuínas , Animais , Antocianinas/farmacologia , Antioxidantes/farmacologia , Drosophila melanogaster , Feminino , Proteína 1 Associada a ECH Semelhante a Kelch , Longevidade , Masculino , Fator 2 Relacionado a NF-E2 , Extratos Vegetais/farmacologia
6.
Phys Rev Lett ; 127(11): 111802, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34558926

RESUMO

In this Letter we demonstrate that what was previously considered as different mechanisms of baryon asymmetry generation involving two right-handed Majorana neutrinos with masses far below the Grand Unified Theory scale-leptogenesis via neutrino oscillations and resonant leptogenesis-are actually united. We show that the observed baryon asymmetry can be generated for all experimentally allowed values of the right-handed neutrino masses above M_{N}≳100 MeV. Leptogenesis is effective in a broad range of the parameters, including mass splitting between two right-handed neutrinos as big as ΔM_{N}/M_{N}∼0.1, as well as mixing angles between the heavy and light neutrinos large enough to be accessible to planned intensity experiments or future colliders.

7.
Phys Rev Lett ; 127(16): 169901, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34723621

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.126.161301.

8.
Phys Rev Lett ; 126(16): 161301, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33961466

RESUMO

It is well known since the works of Utiyama and Kibble that the gravitational force can be obtained by gauging the Poincaré group, which puts gravity on the same footing as the standard model fields. The resulting theory-Einstein-Cartan gravity-inevitably contains four-fermion and scalar-fermion interactions that originate from torsion associated with spin degrees of freedom. We show that these interactions lead to a novel mechanism for producing singlet fermions in the early Universe. These fermions can play the role of dark matter particles. The mechanism is operative in a large range of dark matter particle masses: from a few keV up to ∼10^{8} GeV. We discuss potential observational consequences of keV-scale dark matter produced this way, in particular for right-handed neutrinos. We conclude that a determination of the primordial dark matter momentum distribution might be able to shed light on the gravity-induced fermionic interactions.

9.
Biogerontology ; 22(2): 197-214, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33544267

RESUMO

Endogenous hydrogen sulfide (H2S) is a gasotransmitter with a wide range of physiological functions. Aging is accompanied by disruption of H2S homeostasis, therefore, interventions to the processes of H2S metabolism to maintain its balance may have geroprotective potential. Here we demonstrated the additive geroprotective effect of combined genetic and pharmacological interventions to the hydrogen sulfide biosynthesis system by overexpression of cystathionine-ß-synthase and cystathionine-γ-lyase genes and treatment with precursors of H2S synthesis cysteine (Cys) and N-acetyl-L-cysteine (NAC). The obtained results suggest that additive effects of genetic and pharmacological interventions to H2S metabolism may be associated with the complex interaction between beneficial action of H2S production and prevention of adverse effects of excess H2S production by Cys and NAC treatment.


Assuntos
Cistationina gama-Liase , Sulfeto de Hidrogênio , Animais , Cistationina beta-Sintase/genética , Cistationina gama-Liase/genética , Cisteína , Drosophila melanogaster/genética
10.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673647

RESUMO

Small RNAs are essential to coordinate many cellular processes, including the regulation of gene expression patterns, the prevention of genomic instability, and the suppression of the mutagenic transposon activity. These processes determine the aging, longevity, and sensitivity of cells and an organism to stress factors (particularly, ionizing radiation). The biogenesis and activity of small RNAs are provided by proteins of the Argonaute family. These proteins participate in the processing of small RNA precursors and the formation of an RNA-induced silencing complex. However, the role of Argonaute proteins in regulating lifespan and radioresistance remains poorly explored. We studied the effect of knockdown of Argonaute genes (AGO1, AGO2, AGO3, piwi) in various tissues on the Drosophila melanogaster lifespan and survival after the γ-irradiation at a dose of 700 Gy. In most cases, these parameters are reduced or did not change significantly in flies with tissue-specific RNA interference. Surprisingly, piwi knockdown in both the fat body and the nervous system causes a lifespan increase. But changes in radioresistance depend on the tissue in which the gene was knocked out. In addition, analysis of changes in retrotransposon levels and expression of stress response genes allow us to determine associated molecular mechanisms.


Assuntos
Proteínas Argonautas/antagonistas & inibidores , Proteínas de Drosophila/antagonistas & inibidores , Drosophila melanogaster/crescimento & desenvolvimento , Longevidade/genética , RNA Interferente Pequeno/genética , Tolerância a Radiação/genética , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/efeitos da radiação , Feminino , Raios gama , Masculino , Especificidade de Órgãos , Interferência de RNA
11.
BMC Genet ; 21(Suppl 1): 65, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33092519

RESUMO

BACKGROUND: Beta-amyloid peptide (Aß) is the key protein in the pathogenesis of Alzheimer's disease, the most common age-related neurodegenerative disorder in humans. Aß peptide induced pathological phenotypes in different model organisms include neurodegeneration and lifespan decrease. However, recent experimental evidence suggests that Aß may utilize oligomerization and fibrillization to function as an antimicrobial peptide (AMP), and protect the host from infections. We used the power of Drosophila model to study mechanisms underlying a dual role for Aß peptides. RESULTS: We investigated the effects of Drosophila treatment with three Aß42 peptide isoforms, which differ in their ability to form oligomers and aggregates on the lifespan, locomotor activity and AMP genes expression. Aß42 slightly decreased female's median lifespan (by 4.5%), but the effect was not related to the toxicity of peptide isoform. The lifespan and relative levels of AMP gene expression in male flies as well as locomotor activity in both sexes were largely unaffected by Aß42 peptide treatment. Regardless of the effects on lifespan, Aß42 peptide treatment induced decrease in AMP genes expression in females, but the effects were not robust. CONCLUSIONS: The results demonstrate that chronic treatment with Aß42 peptides does not drastically affect fly aging or immunity.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Drosophila melanogaster/fisiologia , Longevidade , Proteínas Citotóxicas Formadoras de Poros/genética , Animais , Drosophila melanogaster/genética , Feminino , Locomoção , Masculino , Isoformas de Proteínas
12.
Biogerontology ; 21(1): 45-56, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31624983

RESUMO

Studies in human and mammalian cell cultures have shown that induction of DNA repair mechanisms is required for the formation of stimulation effects of low doses of ionizing radiation, named "hormesis". Nevertheless, the role of cellular defense mechanisms in the formation of radiation-induced hormesis at the level of whole organism remains poorly studied. The aim of this work was to investigate the role of genes involved in different mechanisms and stages of DNA repair in radioadaptive response and radiation hormesis by lifespan parameters in Drosophila melanogaster. We studied genes that control DNA damage sensing (D-Gadd45, Hus1, mnk), nucleotide excision repair (mei-9, mus210, Mus209), base excision repair (Rrp1), DNA double-stranded break repair by homologous recombination (Brca2, spn-B, okr) and non-homologous end joining (Ku80, WRNexo), and the Mus309 gene that participates in several mechanisms of DNA repair. The obtained results demonstrate that in flies with mutations in studied genes radioadaptive response and radiation hormesis are absent or appear to a lesser extent than in wild-type Canton-S flies. Chronic exposure of γ-radiation in a low dose during pre-imaginal stages of development leads to an increase in expression of the studied DNA repair genes, which is maintained throughout the lifespan of flies. However, the activation of conditional ubiquitous overexpression of DNA repair genes does not induce resistance to an acute exposure to γ-radiation and reinforces its negative impact.


Assuntos
Dano ao DNA/efeitos da radiação , Reparo do DNA/genética , Proteínas de Drosophila/genética , Longevidade/genética , Animais , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Drosophila melanogaster/efeitos da radiação , Raios gama , Hormese , Longevidade/efeitos da radiação , Mutação
13.
Int J Mol Sci ; 21(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599754

RESUMO

Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.


Assuntos
Envelhecimento , Genoma/efeitos dos fármacos , Instabilidade Genômica , Preparações Farmacêuticas/administração & dosagem , Substâncias Protetoras/uso terapêutico , Animais , Humanos
14.
Biogerontology ; 20(2): 159-170, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30470951

RESUMO

Diet restriction is one of the most accurately confirmed interventions which extend lifespan. Genes coding circadian core clock elements are known to be the key controllers of cell metabolism especially in aging aspect. The molecular mechanisms standing behind the phenomenon of diet-restriction-mediated life extension are connected to circadian clock either. Here we investigate the effects of protein-rich and low-protein diets on lifespan observed in fruit flies overexpressing core clock genes (cry, per, Clk, cyc and tim). The majority of core clock genes being upregulated in peripheral tissues (muscles and fat body) on protein-rich diet significantly decrease the lifespan of male fruit flies from 5 to 61%. Nevertheless, positive increments of median lifespan were observed in both sexes, males overexpressing cry in fat body lived 20% longer on poor diet. Overexpression of per also on poor medium resulted in life extension in female fruit flies. Diet restriction reduces mortality caused by overexpression of core clock genes. Cox-regression model revealed that diet restriction seriously decreases mortality risks of flies which overexpress core clock genes. The hazard ratios are lower for flies overexpressing clock genes in fat body relatively to muscle-specific overexpression. The present work suggests a phenomenological view of how two peripheral circadian oscillators modify effects of rich and poor diets on lifespan and hazard ratios.


Assuntos
Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Dieta Rica em Proteínas , Dieta com Restrição de Proteínas , Longevidade , Animais , Correlação de Dados , Dieta Rica em Proteínas/métodos , Dieta Rica em Proteínas/mortalidade , Dieta com Restrição de Proteínas/métodos , Dieta com Restrição de Proteínas/mortalidade , Drosophila , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Regulação da Expressão Gênica , Longevidade/genética , Longevidade/fisiologia , Masculino , Fatores Sexuais
15.
BMC Genomics ; 19(Suppl 3): 77, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29504896

RESUMO

BACKGROUND: We have previously showed that the carotenoid fucoxanthin can increase the lifespan in Drosophila melanogaster and Caenorhabditis elegans. However, the molecular mechanisms of the geroprotective effect of fucoxanthin have not been studied so far. RESULTS: Here, we studied the effects of fucoxanthin on the Drosophila aging process at the molecular and the whole organism levels. At the organismal level, fucoxanthin increased the median lifespan and had a positive effect on fecundity, fertility, intestinal barrier function, and nighttime sleep. Transcriptome analysis revealed 57 differentially expressed genes involved in 17 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. Among the most represented molecular pathways induced by fucoxanthin, a significant portion is related to longevity, including MAPK, mTOR, Wnt, Notch, and Hippo signaling pathways, autophagy, translation, glycolysis, oxidative phosphorylation, apoptosis, immune response, neurogenesis, sleep, and response to DNA damage. CONCLUSIONS: Life-extending effects of fucoxanthin are associated with differential expression of longevity-associated genes.


Assuntos
Perfilação da Expressão Gênica , Longevidade/genética , Xantofilas/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Feminino , Fertilidade/genética , Mucosa Intestinal/metabolismo , Locomoção/genética , Masculino , Estresse Oxidativo/genética , Permeabilidade
16.
Nucleic Acids Res ; 44(D1): D894-9, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26602690

RESUMO

Aging research is a multi-disciplinary field encompassing knowledge from many areas of basic, applied and clinical research. Age-related processes occur on molecular, cellular, tissue, organ, system, organismal and even psychological levels, trigger the onset of multiple debilitating diseases and lead to a loss of function, and there is a need for a unified knowledge repository designed to track, analyze and visualize the cause and effect relationships and interactions between the many elements and processes on all levels. Aging Chart (http://agingchart.org/) is a new, community-curated collection of aging pathways and knowledge that provides a platform for rapid exploratory analysis. Building on an initial content base constructed by a team of experts from peer-reviewed literature, users can integrate new data into biological pathway diagrams for a visible, intuitive, top-down framework of aging processes that fosters knowledge-building and collaboration. As the body of knowledge in aging research is rapidly increasing, an open visual encyclopedia of aging processes will be useful to both the new entrants and experts in the field.


Assuntos
Envelhecimento/fisiologia , Bases de Dados Factuais , Envelhecimento/genética , Doença , Humanos , Transdução de Sinais
17.
BMC Evol Biol ; 17(Suppl 2): 258, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29297306

RESUMO

BACKGROUND: Gray whale, Eschrichtius robustus (E. robustus), is a single member of the family Eschrichtiidae, which is considered to be the most primitive in the class Cetacea. Gray whale is often described as a "living fossil". It is adapted to extreme marine conditions and has a high life expectancy (77 years). The assembly of a gray whale genome and transcriptome will allow to carry out further studies of whale evolution, longevity, and resistance to extreme environment. RESULTS: In this work, we report the first de novo assembly and primary analysis of the E. robustus genome and transcriptome based on kidney and liver samples. The presented draft genome assembly is complete by 55% in terms of a total genome length, but only by 24% in terms of the BUSCO complete gene groups, although 10,895 genes were identified. Transcriptome annotation and comparison with other whale species revealed robust expression of DNA repair and hypoxia-response genes, which is expected for whales. CONCLUSIONS: This preliminary study of the gray whale genome and transcriptome provides new data to better understand the whale evolution and the mechanisms of their adaptation to the hypoxic conditions.


Assuntos
Genoma , Transcriptoma/genética , Baleias/genética , Animais , Regulação da Expressão Gênica , Biblioteca Gênica , Anotação de Sequência Molecular , Filogenia
18.
PLoS Genet ; 10(12): e1004860, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25521617

RESUMO

The common non-steroidal anti-inflammatory drug ibuprofen has been associated with a reduced risk of some age-related pathologies. However, a general pro-longevity role for ibuprofen and its mechanistic basis remains unclear. Here we show that ibuprofen increased the lifespan of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster, indicative of conserved eukaryotic longevity effects. Studies in yeast indicate that ibuprofen destabilizes the Tat2p permease and inhibits tryptophan uptake. Loss of Tat2p increased replicative lifespan (RLS), but ibuprofen did not increase RLS when Tat2p was stabilized or in an already long-lived strain background impaired for aromatic amino acid uptake. Concomitant with lifespan extension, ibuprofen moderately reduced cell size at birth, leading to a delay in the G1 phase of the cell cycle. Similar changes in cell cycle progression were evident in a large dataset of replicatively long-lived yeast deletion strains. These results point to fundamental cell cycle signatures linked with longevity, implicate aromatic amino acid import in aging and identify a largely safe drug that extends lifespan across different kingdoms of life.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Ibuprofeno/farmacologia , Longevidade/efeitos dos fármacos , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/fisiologia , Avaliação Pré-Clínica de Medicamentos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Estabilidade Proteica , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Triptofano/metabolismo
19.
BMC Genomics ; 17(Suppl 14): 1046, 2016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-28105938

RESUMO

BACKGROUND: Transcriptional changes that contribute to the organism's longevity and prevent the age-dependent decline of biological functions are not well understood. Here, we overexpressed pro-longevity gene encoding glutamate-cysteine ligase catalytic subunit (Gclc) and analyzed age-dependent changes in transcriptome that associated with the longevity, stress resistance, locomotor activity, circadian rhythmicity, and fertility. RESULTS: Here we reproduced the life extension effect of neuronal overexpression of the Gclc gene and investigated its influence on the age-depended dynamics of transcriptome and biological functions such as fecundity, spontaneous locomotor activity and circadian rhythmicity, as well as on the resistance to oxidative, proteotoxic and osmotic stresses. It was shown that Gclc overexpression reduces locomotor activity in the young and middle ages compared to control flies. Gclc overexpression slowed down the age-dependent decline of locomotor activity and circadian rhythmicity, and resistance to stress treatments. Gclc level demonstrated associations with the expression of genes involved in a variety of cellular processes including Jak-STAT, MAPK, FOXO, Notch, mTOR, TGF-beta signaling pathways, translation, protein processing in endoplasmic reticulum, proteasomal degradation, glycolysis, oxidative phosphorylation, apoptosis, regulation of circadian rhythms, differentiation of neurons, synaptic plasticity and transmission. CONCLUSIONS: Our study revealed that Gclc overexpression induces transcriptional changes associated with the lifespan extension and uncovered pathways that may be associated with the age-dependent decline of biological functions.


Assuntos
Drosophila/fisiologia , Regulação da Expressão Gênica , Glutamato-Cisteína Ligase/genética , Longevidade/genética , Transcriptoma , Animais , Ritmo Circadiano/genética , Drosophila melanogaster , Feminino , Fertilidade , Perfilação da Expressão Gênica , Glutationa/metabolismo , Locomoção/genética , Masculino , Neurônios/metabolismo , Estresse Fisiológico/genética
20.
BMC Genomics ; 16 Suppl 13: S8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26694630

RESUMO

BACKGROUND: The molecular mechanisms that determine the organism's response to a variety of doses and modalities of stress factors are not well understood. RESULTS: We studied effects of ionizing radiation (144, 360 and 864 Gy), entomopathogenic fungus (10 and 100 CFU), starvation (16 h), and cold shock (+4, 0 and -4°C) on an organism's viability indicators (survival and locomotor activity) and transcriptome changes in the Drosophila melanogaster model. All stress factors but cold shock resulted in a decrease of lifespan proportional to the dose of treatment. However, stress-factors affected locomotor activity without correlation with lifespan. Our data revealed both significant similarities and differences in differential gene expression and the activity of biological processes under the influence of stress factors. CONCLUSIONS: Studied doses of stress treatments deleteriously affect the organism's viability and lead to different changes of both general and specific cellular stress response mechanisms.


Assuntos
Resposta ao Choque Frio , Drosophila melanogaster/fisiologia , Radiação Ionizante , Inanição/metabolismo , Transcriptoma , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/microbiologia , Drosophila melanogaster/efeitos da radiação , Fungos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA