Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 237(Pt 2): 116980, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37648188

RESUMO

Melanoma, an aggressive malignant tumor originating from melanocytes in humans, is on the rise globally, with limited non-surgical treatment options available. Recent advances in understanding the molecular and cellular mechanisms underlying immune escape, tumorigenesis, drug resistance, and cancer metastasis have paved the way for innovative therapeutic strategies. Combination therapy targeting multiple pathways simultaneously has been shown to be promising in treating melanoma, eliciting favorable responses in most melanoma patients. CAR T-cells, engineered to overcome the limitations of human leukocyte antigen (HLA)-dependent tumor cell detection associated with T-cell receptors, offer an alternative approach. By genetically modifying apheresis-collected allogeneic or autologous T-cells to express chimeric antigen receptors, CAR T-cells can appreciate antigens on cell surfaces independently of major histocompatibility complex (MHC), providing a significant cancer cell detection advantage. However, identifying the most effective target antigen is the initial step, as it helps mitigate the risk of toxicity due to "on-target, off-tumor" and establishes a targeted therapeutic strategy. Furthermore, evaluating signaling pathways and critical molecules involved in melanoma pathogenesis remains insufficient. This study emphasizes the novel approaches of CAR T-cell immunoediting and presents new insights into the molecular signaling pathways associated with melanoma.

2.
Environ Res ; 238(Pt 1): 116933, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37652218

RESUMO

Cardiovascular diseases (CVDs) present a significant threat to health, with traditional therapeutics based treatment being hindered by inefficiencies, limited biological effects, and resistance to conventional drug. Addressing these challenges requires advanced approaches for early disease diagnosis and therapy. Nanotechnology and nanomedicine have emerged as promising avenues for personalized CVD diagnosis and treatment through theranostic agents. Nanoparticles serve as nanodevices or nanocarriers, efficiently transporting drugs to injury sites. These nanocarriers offer the potential for precise drug and gene delivery, overcoming issues like bioavailability and solubility. By attaching specific target molecules to nanoparticle surfaces, controlled drug release to targeted areas becomes feasible. In the field of cardiology, nanoplatforms have gained popularity due to their attributes, such as passive or active targeting of cardiac tissues, enhanced sensitivity and specificity, and easy penetration into heart and artery tissues due to their small size. However, concerns persist about the immunogenicity and cytotoxicity of nanomaterials, necessitating careful consideration. Nanoparticles also hold promise for CVD diagnosis and imaging, enabling straightforward diagnostic procedures and real-time tracking during therapy. Nanotechnology has revolutionized cardiovascular imaging, yielding multimodal and multifunctional vehicles that outperform traditional methods. The paper provides an overview of nanomaterial delivery routes, targeting techniques, and recent advances in treating, diagnosing, and engineering tissues for CVDs. It also discusses the future potential of nanomaterials in CVDs, including theranostics, aiming to enhance cardiovascular treatment in clinical practice. Ultimately, refining nanocarriers and delivery methods has the potential to enhance treatment effectiveness, minimize side effects, and improve patients' well-being and outcomes.


Assuntos
Doenças Cardiovasculares , Nanopartículas , Humanos , Engenharia Tecidual , Nanomedicina/métodos , Nanotecnologia , Preparações Farmacêuticas , Diagnóstico Precoce
3.
Environ Res ; 226: 115674, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36925035

RESUMO

Cardiovascular diseases (CVDs) as environmental-influenced disorders, are a major concern and the leading cause of death worldwide. A range of therapeutic approaches has been proposed, including conventional and novel methods. Natural compounds offer a promising alternative for CVD treatment due to their ability to regulate molecular pathways with minimal adverse effects. Trehalose is natural compound and disaccharide with unique biological functions and cardio-protective properties. The cardio-protective effects of trehalose are generated through its ability to induce autophagy, which is mediated by the transcription factors TFEB and FOXO1. The stimulation of TFEB plays a significant role in regulating autophagy genes and autophagosome formation. Activation of FOXO1 through dephosphorylation of Foxo1 and blocking of p38 mitogen-activated protein kinase (p38 MAPK) also triggers autophagy dramatically. Trehalose has been shown to reduce CVD risk factors, including atherosclerosis, cardiac remodeling after a heart attack, cardiac dysfunction, high blood pressure, and stroke. It also reduces structural abnormalities of mitochondria, cytokine production, vascular inflammation, cardiomyocyte apoptosis, and pyroptosis. This review provides a molecular overview of trehalose's cardioprotective functions, including its mechanisms of autophagy and its potential to improve CVD symptoms based on clinical evidence.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Trealose/uso terapêutico , Trealose/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Autofagia , Coração
4.
Mikrochim Acta ; 190(1): 44, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36602637

RESUMO

Integrated polyurethane (PU)-based foams modified with PEGylated graphene oxide and folic acid (PU@GO-PEG-FA) were developed with the goal of capturing and detecting tumor cells with precision. The detection of the modified PU@GO-PEG surface through FA against folate receptor-overexpressed tumor cells is the basis for tumor cell capture. Molecular dynamics (MD) simulations were applied to study the strength of FA interactions with the folate receptor. Based on the obtained results, the folate receptor has intense interactions with FA, which leads to the reduction in the FA interactions with PEG, and so decreases the fluorescence intensity of the biosensor. The synergistic interactions offer the FA-modified foams a high efficiency for capturing the tumor cell. Using a turn-off fluorescence technique based on the complicated interaction of FA-folate receptor generated by target recognition, the enhanced capture tumor cells could be directly read out at excitation-emission wavelengths of 380-450 nm. The working range is between 1×10 2 to 2×10 4 cells mL -1 with a detection limit of 25 cells mL -1 and good reproducibility with relative standard deviation of 2.35%. Overall, findings demonstrate that the fluorescence-based biosensor has a significant advantage for early tumor cell diagnosis.


Assuntos
Ácido Fólico , Poliuretanos , Simulação de Dinâmica Molecular , Reprodutibilidade dos Testes
5.
Mikrochim Acta ; 190(7): 275, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37358641

RESUMO

A nanoassembly of PEI-passivated Gd@CDs, a type of aptamer, is presented which was designed and characterized in order to target specific cancer cells based on their recognition of the receptor nucleolin (NCL), which is overexpressed on the cell membrane of breast cancer cells for fluorescence and magnetic resonance imaging and treatment. Using hydrothermal methods, Gd-doped nanostructures were synthesized, then modified by a two-step chemical procedure for subsequent applications: the passivating of Gd@CDs with branched polyethyleneimine (PEI) (to form Gd@CDs-PEI1 and Gd@CDs-PEI2), and using AS1411 aptamer (AS) as a DNA-targeted molecule (to generate AS/Gd@CDs-PEI1 and AS/Gd@CDs-PEI2). Consequently, these nanoassemblies were constructed as a result of electrostatic interactions between cationic Gd@CDs-passivated PEI and AS aptamers, offering efficient multimodal targeting nanoassemblies for cancer cell detection. It has been demonstrated through in vitro studies that both types of AS-conjugated nanoassemblies are highly biocompatible, have high cellular uptake efficiency (equivalent concentration of AS: 0.25 µΜ), and enable targeted fluorescence imaging in nucleolin-positive MCF7 and MDA-MB-231 cancer cells compared to MCF10-A normal cells. Importantly, the as-prepared Gd@CDs, Gd@CDs-PEI1, and Gd@CDs-PEI2 exhibit higher longitudinal relaxivity values (r1) compared with the commercial Gd-DTPA, equal to 5.212, 7.488, and 5.667 mM-1s-1, respectively. Accordingly, it is concluded that the prepared nanoassemblies have the potential to become excellent candidates for cancer targeting and fluorescence/MR imaging agents, which can be applied to cancer imaging and personalized nanomedicine.


Assuntos
Neoplasias , Polietilenoimina , Humanos , Polietilenoimina/química , Imageamento por Ressonância Magnética/métodos , Corantes Fluorescentes/química , Espectroscopia de Ressonância Magnética
6.
Stem Cells ; 39(12): 1625-1649, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33786925

RESUMO

Organoids are powerful systems to facilitate the study of individuals' disorders and personalized treatments. This emerging technology has improved the chance of translatability of drugs for preclinical therapies and mimicking of the complexity of organs, proposing numerous approaches for human disease modeling, tissue engineering, drug development, diagnosis, and regenerative medicine. In this review, we outline the history of organoid technology and summarize its faithful applications, and then we discuss the challenges and limitations encountered by three-dimensional organoids. Finally, we propose that human organoids offer a basic mechanistic infrastructure for "human modeling" systems to prescribe personalized medicines.


Assuntos
Organoides , Medicina Regenerativa , Humanos , Modelos Biológicos , Medicina de Precisão/métodos , Engenharia Tecidual
7.
J Res Med Sci ; 27: 73, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353349

RESUMO

Background: Cancer patients, as a highly vulnerable population, are receiving a great deal of attention in the current crisis of coronavirus 2019 (COVID-19). To date, shreds of evidence are not sufficient to the description of COVID-19 outcomes in patients with cancer. This study was performed to evaluate the demographic and clinical characteristics and subsequent outcomes of COVID-19 in cancer patients. Materials and Methods: A hospital-based study was conducted involving 66 cancer patients with a confirmed diagnosis of COVID-19 from January 15, 2020, to December 21, 2020, in Isfahan, Iran. The clinical information was collected by interview and medical records. The statistical analyses were performed to describe categorical variables as well as mean, standard deviation, median, and the interquartile range for quantitative variables. Results: In our study, 66 cancer patients with confirmed COVID-19 (age: 17-97 years; 50% female) were included. Leukemia and bone marrow cancer with a frequency of 25.7% were the most common types of cancer among them. Cancer patients mostly complained of fever, cough and fatigue, and shortness of breath. Among 76.9% of patients discharged from the hospital with relative recovery, 23% died; the most common cause of death was acute respiratory distress syndrome. Age, gender, and type of cancer did not affect cancer mortality. COVID-19 had no potential effect to increase the risk of side effects of anticancer therapies. Conclusion: The results of our studies revealed that cancer is an important risk factor for the higher rate of mortality in patients with COVID-19. These findings could help physicians for the management, treatment, and supportive care of COVID-19 cancer patients.

8.
Mol Biol Rep ; 48(1): 139-146, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33400073

RESUMO

Aptamers as potential alternatives for antibodies could be employed against hepatitis B surface antigen (HBsAg), the great hallmark and first serological marker in HBV, for further theragnostic applications. Therefore, isolation HBsAg specific aptamer was performed in this study with a modified Cell-SELEX method. HEK293T overexpressing HBsAg and HEK293T as target and control cells respectively, were incubated with single-stranded rounds of DNA library during six SELEX and Counter SELEX rounds. Here, we introduced the new modified Cell-SELEX using deoxyribonuclease I digestion to separate single stranded DNA aptamers against the HBsAg. Characterization and evaluation of selected sequences were performed using flow cytometry analysis. The results led to isolation of 15 different ssDNA clones in six rounds of selection which were categorized to four clusters based on common structural motifs. The evaluation of SELEX progress showed growth in aptamer affinity with increasing in the cycle number. Taken together, the application of modified cell-SELEX demonstrated the isolation of HBsAg-specific ssDNA aptamers with proper affinity. Modified cell-SELEX as an efficient method can shorten the selection procedure and increase the success rate while the benefits of cell-based SELEX will be retained. Selected aptamers could be applied in purification columns, diagnostic kits, and drug delivery system against HBV-related liver cancer.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Antígenos de Superfície da Hepatite B/isolamento & purificação , Hepatite B/genética , Neoplasias Hepáticas/tratamento farmacológico , Técnica de Seleção de Aptâmeros , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/farmacologia , Desoxirribonuclease I/genética , Sistemas de Liberação de Medicamentos , Citometria de Fluxo , Células HEK293 , Hepatite B/imunologia , Hepatite B/virologia , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/imunologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia
9.
Int J Mol Sci ; 22(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064039

RESUMO

In late 2019, a new member of the Coronaviridae family, officially designated as "severe acute respiratory syndrome coronavirus 2" (SARS-CoV-2), emerged and spread rapidly. The Coronavirus Disease-19 (COVID-19) outbreak was accompanied by a high rate of morbidity and mortality worldwide and was declared a pandemic by the World Health Organization in March 2020. Within the Coronaviridae family, SARS-CoV-2 is considered to be the third most highly pathogenic virus that infects humans, following the severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV). Four major mechanisms are thought to be involved in COVID-19 pathogenesis, including the activation of the renin-angiotensin system (RAS) signaling pathway, oxidative stress and cell death, cytokine storm, and endothelial dysfunction. Following virus entry and RAS activation, acute respiratory distress syndrome develops with an oxidative/nitrosative burst. The DNA damage induced by oxidative stress activates poly ADP-ribose polymerase-1 (PARP-1), viral macrodomain of non-structural protein 3, poly (ADP-ribose) glycohydrolase (PARG), and transient receptor potential melastatin type 2 (TRPM2) channel in a sequential manner which results in cell apoptosis or necrosis. In this review, blockers of angiotensin II receptor and/or PARP, PARG, and TRPM2, including vitamin D3, trehalose, tannins, flufenamic and mefenamic acid, and losartan, have been investigated for inhibiting RAS activation and quenching oxidative burst. Moreover, the application of organic and inorganic nanoparticles, including liposomes, dendrimers, quantum dots, and iron oxides, as therapeutic agents for SARS-CoV-2 were fully reviewed. In the present review, the clinical manifestations of COVID-19 are explained by focusing on molecular mechanisms. Potential therapeutic targets, including the RAS signaling pathway, PARP, PARG, and TRPM2, are also discussed in depth.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/terapia , Síndrome da Liberação de Citocina/tratamento farmacológico , Nanomedicina/métodos , Estresse Oxidativo/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/metabolismo , SARS-CoV-2/efeitos dos fármacos , Apoptose/efeitos dos fármacos , COVID-19/metabolismo , COVID-19/fisiopatologia , Colecalciferol/farmacologia , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Sistema Renina-Angiotensina/efeitos dos fármacos , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/metabolismo , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/metabolismo , Taninos/farmacologia , Trealose/farmacologia
10.
J Res Med Sci ; 26: 94, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899932

RESUMO

BACKGROUND: Familial hypercholesterolemia (FH) leads to elevated low-density lipoprotein cholesterol (LDL-C) levels in plasma. Mutations of its related gene; apolipoprotein B (APOB) is seen in about two percent of the patient with FH. Thyroid disease is usually part of the exclusion criteria for the detection of FH which alters the lipid profile. We evaluated mutations in the APOB gene in patients with high LDL-C levels. MATERIALS AND METHODS: Patients aged between 2 and 80 years with at least one LDL-C level of more than 190 mg/dl were selected (120 patients) from Isfahan Laboratories. Blood samples were obtained from all patients. Genomic DNA was extracted. Primer sequences were designed by Oligo 7.60 to amplify the desired 844 bp region of exon 26 of the APOB gene containing R3500Q and R3500W variants associated with FH. RESULTS: Overall, two patients showed a heterozygous form of a common pathogenic variant in exon 26 named c. 10579 C > T (R3500W, cDNA.10707), and one patient was hypothyroidism. We also recognized another nonpathognomonic variant c. 10913G > A (rs1801701, cDNA.11041) in 13 patients, two of them were hypothyroidism. CONCLUSION: This study for the first time shows the coexistence of APOB mutation in hypothyroidism, which emphasis screening of patients with hypothyroid for FH detection.

11.
Br J Clin Pharmacol ; 86(9): 1875-1881, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32040868

RESUMO

AIMS: Breast cancer is the most frequently occurring cancer in women. Lumpectomy followed by radiotherapy is suggested to be as effective as a total mastectomy. Radiation-induced dermatitis often occurs as a result of breast radiotherapy. Recent studies suggest that doxepin has promising anti-inflammatory properties. This study was undertaken to evaluate the effects of doxepin therapy on radiation dermatitis. METHODS: A double-blind randomized clinical trial was launched from 2016 to 2017, with a total of 48 patients who had undergone breast-conserving surgery and received postoperative radiation therapy. Radiotherapy was applied 5 days per week for 5 weeks. Adverse dermatological effects were evaluated by a physician at the beginning of the fifth week of radiotherapy and the patients were then randomly assigned (1:1 ratio) to receive either doxepin (5%) or placebo cream for 7 days. RESULTS: There were no significant differences in the dermatitis grade between doxepin and placebo groups at baseline (P > .5). The occurrence of acute dermatitis (grade 2 or higher) was significantly lower with the use of doxepin than with placebo (P ≤ .0001, Zα = 1.96 at 95% confidence interval). CONCLUSION: Doxepin cream prevents dermatitis grade 2 or higher during post-operative breast irradiation. Doxepin cream is easy to use, affordable and prevents pain and irritation.


Assuntos
Neoplasias da Mama , Doxepina/farmacologia , Radiodermite , Neoplasias da Mama/radioterapia , Método Duplo-Cego , Feminino , Humanos , Mastectomia , Radiodermite/prevenção & controle , Método Simples-Cego
12.
J Cell Biochem ; 120(5): 8438-8446, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30556211

RESUMO

Elevation of hemoglobin F (HbF) ameliorates symptoms of ß-thalassemia, as a common autosomal recessive disorder. In this study, the ability of an engineered zinc-finger nuclease (ZFN) system was assesed to disrupt the KLF1 gene to inhibit the γ to ß hemoglobin switching in K562 cells. This study was performed using a second generation integration-deficient lentiviral vector assigned to transient gene targeting. The sequences coding for zinc finger protein arrays were designed and subcloned in TDH plus as a transfer vector. Transduction of K562 cells was performed with the integrase minus lentivirus containing ZFN. The indel percentage of the transducted cells with lentivirus containing ZFN was about 29%. Differentiation of K562 cell line into erythroid cell lineage was induced with cisplatin concentration of 15 µg/mL. After differentiation, γ-globin and HbF expression were evaluated using real-time reverse-transcription polymerase chain reaction and hemoglobin electrophoresis methods. The levels of γ-globin messenger RNA were nine-fold higher in the ZFN treated cells compared with untreated cells 5 days after differentiation. Hemoglobin electrophoresis method showed the same results for HbF level measurement. Application of the ZFN tool to induce KLF1 gene mutation in adult erythroid progenitors might be a candidate to stimulate HbF expression in ß-thalassemia patients.

13.
J Cell Biochem ; 120(9): 16264-16272, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31111537

RESUMO

One of the most important molecules for multiple sclerosis pathogenesis is α4 integrin, which is responsible for autoreactive leukocytes migration into the brain. The monoclonal antibody, natalizumab, was introduced to market for blocking the extravasation of autoreactive leukocytes via inhibition of α4 integrin. However, the disadvantages of antibodies provided a suitable background for other agents to be replaced with antibodies. Considering the profound advantages of aptamers over antibodies, aptamer isolation against α4 integrin was intended in the current study. The α4 integrin-specific aptamers were selected using cell-systematic evolution of ligands by exponential enrichment (SELEX) method with human embryonic kidney (HEK)-293T overexpressing α4 integrin and HEK-293T as target and control cells, respectively. Evaluation of selected aptamer was performed through flow cytometric analysis. The selected clones were then sequenced and analyzed for any possible secondary structure and affinity. The results of this study led to isolation of 13 different single-stranded DNA clones in 11 rounds of selection which were categorized to three clusters based on common structural motifs and the equilibrium dissociation constant (K d ) of the most stable structure was calculated. The evaluation of SELEX progress showed growth in aptamer affinity with increasing of the number of cycles. Taken together, the findings of this study demonstrated the isolation of α4-specific single-stranded DNA aptamers with suitable affinity for ligand, which can further be replaced with natalizumab.


Assuntos
Aptâmeros de Nucleotídeos/genética , Integrina alfa4/química , Esclerose Múltipla/genética , Aptâmeros de Nucleotídeos/farmacologia , Células HEK293 , Humanos , Integrina alfa4/genética , Modelos Moleculares , Esclerose Múltipla/tratamento farmacológico , Conformação de Ácido Nucleico , Técnica de Seleção de Aptâmeros
14.
J Cell Biochem ; 119(3): 2512-2519, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28941328

RESUMO

ß-thalassemia is a common autosomal recessive disorder characterized by a deficiency in the synthesis of ß-chains. Evidences show that increased HbF levels improve the symptoms in patients with ß-thalassemia or sickle cell anemia. In this study, ZFN technology was applied to induce a mutation in the binding domain region of SOX6 to reactivate γ-globin expression. The sequences coding for ZFP arrays were designed and sub cloned in TDH plus as a transfer vector. The ZFN expression was confirmed using Western blot analysis. In the next step, using the site-directed mutagenesis strategy through the overlap PCR, a missense mutation (D64V) was induced in the catalytic domain of the integrase gene in the packaging plasmid and verified using DNA sequencing. Then, the integrase minus lentivirus containing ZFN cassette was packaged. Transduction of K562 cells with this virus was performed. Mutation detection assay was performed. The indel percentage of the cells transducted with lenti virus containing ZFN was 31%. After 5 days of erythroid differentiation with 15 µg/mL cisplatin, the levels of γ-globin mRNA were sixfold in the cells treated with ZFN compared to untreated cells. In the meantime, the measurement of HbF expression levels was carried out using hemoglobin electrophoresis and showed the same results. Integrase minus lentivirus can provide a useful tool for efficient transient gene expression and helps avoid disadvantages of gene targeting using the native virus. The ZFN strategy applied here to induce indel on SOX6 gene in adult erythroid progenitors may provide a method to activate fetal hemoglobin expression in individuals with ß-thalassemia.


Assuntos
Edição de Genes/métodos , Terapia Genética/métodos , Fatores de Transcrição SOXD/genética , Talassemia beta/genética , gama-Globinas/genética , Humanos , Células K562 , Mutação , Transdução Genética , Nucleases de Dedos de Zinco , gama-Globinas/biossíntese
15.
J Cell Biochem ; 119(11): 9357-9363, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30010219

RESUMO

Elevation of Hemoglobin F ameliorates symptoms of ß-thalassemia, a common autosomal recessive disorder. The transcription factor SOX6 plays a key role in the γ to ß-globin gene switching. In the current investigation, a mutation was induced using the CRISPR/Cas9 technology in the binding domain region of SOX6 to reactivate γ-globin expression. Three CRISPR/Cas9 cassettes were provided, whose single-guide RNAs targeted different regions in the SOX6 gene-binding domain. After transfection of K562 cells with CRISPR a, b and c, and subsequent erythroid differentiation, the indel percentage of the cells was about 30%, 25%, and 24%, respectively. Relative quantification showed that the γ-globin mRNA level increased to 1.3-, 2.1-, and 1.1-fold in the cells treated with CRISPR/Cas9 a, b, and c, respectively, compared with untreated cells. Our results show that mutation induction in the binding site of the SOX6 gene leads to γ-globin reactivation. These findings support the idea that CRISPR interrupts the SOX6 binding site, and, as a result, SOX6 is incapable of binding the γ-globin promoter. In conclusion, SOX6 disruption could be considered as a therapeutic approach for ß-thalassemia treatment. CRISPR/Cas9 was selected for this purpose as it is the most rapidly evolving technology.


Assuntos
Sistemas CRISPR-Cas/fisiologia , Terapia Genética/métodos , Fatores de Transcrição SOXD/genética , Talassemia beta/terapia , gama-Globinas/metabolismo , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Mutação/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição SOXD/metabolismo , Talassemia beta/genética , gama-Globinas/genética
16.
J Oral Pathol Med ; 47(1): 86-90, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28650588

RESUMO

BACKGROUND: Ameloblastoma is a benign, slow-growing and locally invasive tumor. It is one of the most prevalent odontogenic tumors, with an incidence rate of 1% of all oral tumors and approximately 18% of odontogenic tumors. A group of genes have been investigated in patients with ameloblastoma. The BRAF V600E mutation has been implicated as the most common mutation in ameloblastoma. The presence or absence of this mutation has been associated with several clinicopathological properties, including location, age at diagnosis, histology, and prognosis. Although some populations have been investigated so far, little data are available on the Iranian population. The current research was launched to study the BRAF V600E mutation among a cohort of Iranian patients with ameloblastoma. METHODS: In this clinicopathological and molecular biology study, a total of 19 formalin-fixed, paraffin-embedded tissues were studied. DNA extraction was performed, followed by PCR-sequencing of exons 10 and 15 of the BRAF gene to identify mutations. In silico analysis was performed for the identified variants. Results were analyzed by T test, Chi-square, and Fisher's exact test. RESULTS: Totally, 12 of 19 samples (63%) harbored the p. V600E hotspot mutation. In addition, we identified several variants, two of which were novel. The c.1769T>G (p. V590G) and c.1751C>T (p.L584F) as the novel variants showed a possible damaging effect by in silico analysis. No variant was found within exon 10. CONCLUSIONS: Our study confirms the role of BRAF mutations in ameloblastoma in the Iranian patients studied.


Assuntos
Ameloblastoma/genética , Predisposição Genética para Doença , Neoplasias Bucais/genética , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , DNA de Neoplasias/isolamento & purificação , Éxons , Feminino , Frequência do Gene , Humanos , Irã (Geográfico) , Masculino , Pessoa de Meia-Idade , Adulto Jovem
17.
J Gene Med ; 18(10): 294-301, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27668420

RESUMO

BACKGROUND: ß-thalassemia comprises a major group of human genetic disorders involving a decrease in or an end to the normal synthesis of the ß-globin chains of hemoglobin. KLF1 is a key regulatory molecule involved in the γ- to ß-globin gene switching process directly inducing the expression of the ß-globin gene and indirectly repressing γ-globin. The present study aimed to investigate the ability of an engineered CRISPR/Cas9 system with respect to disrupting the KLF1 gene to inhibit the γ- to ß-hemoglobin switching process in K562 cells. METHODS: We targeted three sites on the KLF1 gene, two of which are upstream of codon 288 in exon 2 and the other site being in exon 3. RESULTS: The average indel percentage in the cells transfected with CRISPR a, b and c was approximately 24%. Relative quantification was performed for the assessment of γ-globin expression. The levels of γ-globin mRNA on day 5 of differentiation were 8.1-, 7.7- and 1.8-fold in the cells treated with CRISPR/Cas9 a, b and c, respectively,compared to untreated cells. The measurement of HbF expression levels confirmed the same results. CONCLUSIONS: The findings obtained in the present study support the induction of an indel mutation in the KLF1 gene leading to a null allele. As a result, the effect of KLF1 on the expression of BCL11A is decreased and its inhibitory effect on γ-globin gene expression is removed. Application of CRISPR technology to induce an indel in the KLF1 gene in adult erythroid progenitors may provide a method for activating fetal hemoglobin expression in individuals with ß-thalassemia or sickle cell disease.


Assuntos
Sistemas CRISPR-Cas , Marcação de Genes/métodos , Fatores de Transcrição Kruppel-Like/genética , Globinas beta/genética , Sequência de Bases , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação INDEL , Células K562 , Fatores de Transcrição Kruppel-Like/metabolismo , Modelos Genéticos , Globinas beta/metabolismo
18.
Biotechnol Lett ; 38(8): 1243-50, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27075690

RESUMO

OBJECTIVE: To compare methods for erythroid differentiation of K562 cells that will be promising in the treatment of beta-thalassemia by inducing γ-globin synthesis. RESULTS: Cells were treated separately with: RPMI 1640 medium without glutamine, RPMI 1640 medium without glutamine supplemented with 1 mM sodium butyrate, RPMI 1640 medium supplemented with 1 mM sodium butyrate, 25 µg cisplatin/ml, 0.1 µg cytosine arabinoside/ml. The highest differentiation (84 %) with minimum toxicity was obtained with cisplatin at 15 µg /ml. Real-time RT-PCR showed that expression of the γ-globin gene was significantly higher in the cells differentiated with cisplatin compared to undifferentiated cells (P < 0.001). CONCLUSIONS: Cisplatin is useful in the experimental therapy of ß-globin gene defects and can be considered for examining the basic mechanism of γ-reactivation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Butiratos/farmacologia , Diferenciação Celular/genética , Cisplatino/farmacologia , Citarabina/farmacologia , Células Eritroides/citologia , Células Eritroides/efeitos dos fármacos , Células Eritroides/metabolismo , Glutamina/farmacologia , Humanos , Células K562 , gama-Globinas/genética
20.
J Biomater Sci Polym Ed ; 35(4): 482-500, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38190321

RESUMO

Wound healing will be enhanced using structures with therapeutic effects. This study fabricated a novel nanofibrous scaffold for skin tissue regeneration using a coaxial structure polyglycerol sebacate (PGS)/platelet-rich plasma (PRP) was embedded in the core and two different compositions were selected for the shell; in one group, polycaprolactone (PCL), and in the other group, PGS/PCL blend was used. The physical, mechanical behavior, drug delivery patterns, and cell response of scaffolds were evaluated. Results revealed that by adding PRP to the core and PGS to the shell, fiber diameters decreased to 260.8 ± 31.3 nm. It also decreased the water contact angle from 66° to 32°, that is ideal candidate for cell attachment. The drug release showed a burst release pattern in the first 30 min, followed by a continuous and slow release during the first day. Adding PGS to the shell decreased the elastic modulus, and its value reached about 500 kPa, which is near the skin elastic modulus and will lead to greater mechanical compatibility for cell proliferation. Particularly, the addition of PRP to the fiber structure enhanced the cell viability and cell adhesion with a suitable morphology. Based on the results, nanofibrous PGS-PRP/PGS-PCL dressing can enhance skin tissue regeneration.


Assuntos
Glicerol , Nanofibras , Plasma Rico em Plaquetas , Polímeros , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Nanofibras/química , Poliésteres/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA