Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Indian J Urol ; 40(1): 37-43, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38314072

RESUMO

Introduction: Postoperative pain following percutaneous nephrolithotomy (PCNL) adds to the morbidity of patients requiring additional analgesia. Various modalities of pain control techniques, such as intercostal nerve block (ICNB) and peritract infiltration (PTI), are being studied for better pain management. This study compares the efficacy of ICNB with PTI for postoperative pain management. Methods: A double-blinded, prospective, randomized control study was conducted, in which 0.25% bupivacaine, either ICNB or PTI, was given at the puncture site at the end of PCNL. The primary outcome was a comparison of postoperative pain score measured with resting Visual analogue Scale (r-VAS) and dynamic VAS (D-VAS) recorded at 2 h, 4 h, 8 h, 10 h, 12 h, 24 h, and at discharge. Injection ketorolac was given as rescue analgesia. Secondary outcomes include time to first rescue analgesia and total analgesic requirement (TAR). Results: Sixty patients were randomized into two equal groups with 63.3% male and 36.6% female, with a mean age of 37.25 ± 13.09 years. In Group ICNB, 24 (40%) and 6 (10%) patients and in Group PTI, 21 (35%) and 9 (15%) patients underwent standard and mini PCNL, respectively, in each group. All cases were PCNL doen in prone position. The mean R-VAS and D-VAS scores at 2, 4, 8, 12, 24, and 48 h were similar in both groups. The mean TAR was 56.84 ± 0.33.00 mg and 55.54 ± 0.29.64 mg of injection ketorolac in Group ICNB and PTI, respectively (P < 0.894). The time to first rescue analgesic demand were 7.11 ± 4.898 h and 6.25 ± 3.354 h (P < 0.527). Both the groups were comparable in terms of length of hospital stay, stone clearance rate, and complication rate. Conclusion: The ICNB was as efficacious as PTI for postoperative pain control with 0.25% bupivacaine following PCNL.

2.
Nanotechnology ; 34(14)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36548988

RESUMO

Plasmonic nanocrystals (NCs) assisted phase transition of two-dimensional molybdenum disulfide (2D-MoS2) unlashes numerous opportunities in the fields of energy harvesting via electrocatalysis and photoelectrocatalysis by enhancing electronic conductivity, increasing catalytic active sites, lowering Gibbs free energy for hydrogen adsorption and desorption, etc. Here, we report the synthesis of faceted gold pentagonal bi-pyramidal (Au-PBP) nanocrystals (NC) for efficient plasmon-induced phase transition (from 2 H to 1 T phase) in chemical vapor deposited 2D-MoS2. The as-developed Au-PBP NC with the increased number of corners and edges showed an enhanced multi-modal plasmonic effect under light irradiations. The overpotential of hydrogen evolution reaction (HER) was reduced by 61 mV, whereas the Tafel slope decreased by 23.7 mV/dec on photoexcitation of the Au-PBP@MoS2hybrid catalyst. The enhanced performance can be attributed to the light-induced 2H to 1 T phase transition of 2D-MoS2, increased active sites, reduced Gibbs free energy, efficient charge separation, change in surface potential, and improved electrical conductivity of 2D-MoS2film. From density functional theory (DFT) calculations, we obtain a significant change in the electronic properties of 2D-MoS2(i.e. work function, surface chemical potential, and the density of states), which was primarily due to the plasmonic interactions and exchange-interactions between the Au-PBP nanocrystals and monolayer 2D-MoS2, thereby enhancing the phase transition and improving the surface properties. This work would lay out finding assorted routes to explore more complex nanocrystals-based multipolar plasmonic NC to escalate the HER activity of 2D-MoS2and other 2D transition metal dichalcogenides.

3.
Environ Res ; 233: 116476, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37348632

RESUMO

Curcumin, derived from turmeric, has a strong anticancer potential known for millennia. The development of this phytochemical as a medicine has been hampered by several significant deficiencies, including its poor water solubility and low bioavailability. This review article discusses possibilities to overcome these bottlenecks by focusing on this natural polyphenol's nanoformulation. Moreover, preparation of curcumin conjugates containing folates as ligands for folic acid receptors can add a new important dimension in this field, allowing specific targeting of cancer cells, considering the significantly higher expression of these receptors in malignant tissues compared to normal cells. It is highly expected that simultaneous improvement of different aspects of curcumin in fighting against such a complex and multifaceted disease like cancer. Therefore, we can better comprehend cancer biology by developing a mechanistic understanding of curcumin, which will also inspire the scientific community to develop new pharmacological models, and exploration of emerging directions to revitalize application of natural products in cancer therapy.


Assuntos
Curcumina , Neoplasias , Humanos , Curcumina/uso terapêutico , Curcumina/farmacologia , Ácido Fólico/uso terapêutico , Neoplasias/tratamento farmacológico , Solubilidade
4.
Int J Cancer ; 151(7): 981-992, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489027

RESUMO

Accumulating evidence demonstrates that the host genome's epigenetic modifications are essential for living organisms to adapt to extreme conditions. DNA methylation, covalent modifications of histone and interassociation of noncoding RNAs facilitate the cellular manifestation of epigenetic changes in the genome. Out of various factors involved in the epigenetic programming of the host, noncoding RNAs (ncRNAs) such as microRNA (miRNA), long noncoding RNA (lncRNA), circular RNA, snoRNA and piRNA are new generation noncoding molecules that influence a variety of cellular processes like immunity, cellular differentiation and tumor development. During tumor development, temporal changes in miRNA/lncRNA rheostat influence sterile inflammatory responses accompanied by the changes in the carcinogenic signaling in the host. At the cellular level, this is manifested by the upregulation of inflammasome and inflammatory pathways, which promotes cancer-related inflammation. Given this, we discuss the potential of lncRNAs, miRNAs, circular RNA, snoRNA and piRNA in regulating inflammation and tumor development in the host.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , Inflamação , MicroRNAs/genética , Neoplasias/genética , Neoplasias/terapia , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno , RNA Nucleolar Pequeno , RNA não Traduzido/genética
5.
Nutr Cancer ; 74(4): 1489-1496, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34309470

RESUMO

As the current study reports the utilization of the leaf extract of Catharanthus roseus (C.roseus) for the biological synthesis of zinc oxide nanoparticles (ZnO NPs) because of the importance of the importance of health and environment. Bioinspired synthesis were characterized using Fourier Transform Infrared Spectroscopy (FT-IR), Field Emission-Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), Energy-Dispersive X-ray Spectroscopy (EDX) and X-Ray diffraction (XRD). XRD and TEM micrograph analysis revealed that the synthesized nanostructures were well-dispersed and spherical with the average particle size in the 18-30 nm range were produced. The FT-IR spectra confirmed presence of phenolic compounds that act as reducing and capping agents. Further, it suggested the possible utilization of hydroxyl groups and amides in the reduction of Zn ions and stablization of ZnO NPs. Zinc oxide nanomaterials are effective in cancer treatments, including the destruction of tumor cells with minimal damage to healthy cells. The toxicity of zinc oxide nanomaterials was checked in vitro in the human breast cancer line MDA-MB-231. Inverse relation of the percentage of viable cells to the concentration of zinc oxide nanomaterials at increasing molar levels was assessed. The cytotoxicity analysis used in the MTT test shows the substantial viable MDA-MB-231-cells despite the increased concentration of exposure to zinc oxide nanomaterials. Reduction in the ratio of viable MDA-MB-231 cells after being exposed to zinc oxide nanomaterials was compared to untreated cancerous cells. The present approach to biosynthesis is quick, inexpensive, eco-friendly, and high-rise stable nanomaterials of zinc oxide with substantial cancer potential. This is the first study that reports molar concentrations (with the lowest concentration of 10 mM) as an anticancer agent for breast cancer and potential clinical uses for synthesized zinc oxide nanomaterials. Thus, C. roseus based synthesized ZnO NPs could be explored not only as environmentally benign method but also as a potential anti-carcinogenic agent.


Assuntos
Neoplasias da Mama , Catharanthus , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Antibacterianos , Neoplasias da Mama/tratamento farmacológico , Feminino , Química Verde/métodos , Humanos , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Nanopartículas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta , Espectroscopia de Infravermelho com Transformada de Fourier , Óxido de Zinco/química
6.
Pharmacol Res ; 186: 106523, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36377125

RESUMO

Despite advanced clinical and translational oncology research, mortality rates are still increasing worldwide. Recently, a class of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been well investigated in regulating biological, molecular, and cellular signaling pathways. This review article provided the current research progress on how miRNAs, lncRNAs, and circRNAs regulate Hedgehog (Hh) and Hippo signaling pathways in various cancers. These ncRNAs target both pathways' key downstream molecules and may be used for targeted cancer treatment. Moreover, Hh and Hippo signaling pathways crosstalked with each other through Gli1 of Hh pathways and YAP1/TEAD molecules of Hippo pathways during cancer progression. Additionally, Hh and Hippo signaling pathways regulate resistance against the chemo, radio, and immune therapies for several types of cancer via inducing GLI and YAP/TAZ proteins level. Therefore, to improve the treatment regime, we presented the role of various prominent phytochemicals such as curcumin, resveratrol, genistein, quercetin, paclitaxel, and silibinin in regulating lncRNAs, miRNAs, circRNA through Hedgehog and Hippo signaling pathways' constituents in cancers. We believe that knowledge obtained from this review may help make new drugs for cancer treatment in the future.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Circular , Proteínas Hedgehog , Via de Sinalização Hippo , RNA não Traduzido/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética
7.
Mol Biol Rep ; 49(9): 8987-8999, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35474053

RESUMO

As a landmark, scientific investigation in cytokine signaling and interferon-related anti-viral activity, signal transducer and activator of transcription (STAT) family of proteins was first discovered in the 1990s. Today, we know that the STAT family consists of several transcription factors which regulate various molecular and cellular processes, including proliferation, angiogenesis, and differentiation in human carcinoma. STAT family members play an active role in transducing signals from cell membrane to nucleus through intracellular signaling and thus activating gene transcription. Additionally, they are also associated with the development and progression of human cancer by facilitating inflammation, cell survival, and resistance to therapeutic responses. Accumulating evidence suggests that not all STAT proteins are associated with the progression of human malignancy; however, STAT3/5 are constitutively activated in various cancers, including multiple myeloma, lymphoma, breast cancer, prostate hepatocellular carcinoma, and non-small cell lung cancer. The present review highlights how STAT-associated events are implicated in cancer inflammation, angiogenesis and non-coding RNA (ncRNA) modulation to highlight potential intervention into carcinogenesis-related cellular processes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Hepáticas , Neoplasias Pulmonares , Humanos , Inflamação/genética , Inflamação/metabolismo , Masculino , Neovascularização Patológica/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia
8.
Int J Mol Sci ; 22(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920789

RESUMO

Aromatase inhibitors (AIs) such as anastrozole, letrozole, and exemestane have shown to prevent metastasis and angiogenesis in estrogen receptor (ER)-positive breast and ovarian tumors. They function primarily by reducing estrogen production in ER-positive post-menopausal breast and ovarian cancer patients. Unfortunately, current AI-based therapies often have detrimental side-effects, along with acquired resistance, with increased cancer recurrence. Thus, there is an urgent need to identify novel AIs with fewer side effects and improved therapeutic efficacies. In this regard, we and others have recently suggested noncoding RNAs (ncRNAs), specifically microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), as potential molecular targets for utilization in modulating cancer hallmarks and overcoming drug resistance in several cancers, including ER-positive breast and ovarian cancer. Herein, we describe the disruptive functions of several miRNAs and lncRNAs seen in dysregulated cancer metabolism, with a focus on the gene encoding for aromatase (CYP19A1 gene) and estrogen synthesis as a novel therapeutic approach for treating ER-positive breast and ovarian cancers. Furthermore, we discuss the oncogenic and tumor-suppressive roles of several miRNAs (oncogenic miRNAs: MIR125b, MIR155, MIR221/222, MIR128, MIR2052HG, and MIR224; tumor-suppressive miRNAs: Lethal-7f, MIR27B, MIR378, and MIR98) and an oncogenic lncRNA (MIR2052HG) in aromatase-dependent cancers via transcriptional regulation of the CYP19A1 gene. Additionally, we discuss the potential effects of dysregulated miRNAs and lncRNAs on the regulation of critical oncogenic molecules, such as signal transducer, and activator of transcription 3, ß-catenin, and integrins. The overall goal of this review is to stimulate further research in this area and to facilitate the development of ncRNA-based approaches for more efficacious treatments of ER-positive breast and ovarian cancer patients, with a slight emphasis on associated treatment-delivery mechanisms.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , MicroRNAs/genética , Terapia de Alvo Molecular , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , RNA Longo não Codificante/genética , Receptores de Estrogênio/metabolismo , Feminino , Humanos , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo
9.
Int J Mol Sci ; 21(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947897

RESUMO

Intrinsic resistance to ionizing radiation is the major impediment in the treatment and clinical management of esophageal squamous cell carcinoma (ESCC), leading to tumor relapse and poor prognosis. Although several biological and molecular mechanisms are responsible for resistance to radiotherapy in ESCC, the molecule(s) involved in predicting radiotherapy response and prognosis are still lacking, thus requiring a detailed understanding. Recent studies have demonstrated an imperative correlation amongst several long non-coding RNAs and their involvement in complex cellular networks like DNA damage and repair, cell cycle, apoptosis, proliferation, and epithelial-mesenchymal transition. Additionally, accumulating evidence has suggested abnormal expression of lncRNAs in malignant tumor cells before and after radiotherapy effects in tumor cells' sensitivity. Thus, lncRNAs indeed represent unique molecules that can influence tumor cell susceptibility for various clinical interventions. On this note, herein, we have summarized the current status of lncRNAs in augmenting resistance/sensitivity in ESCC against radiotherapy. In addition, we have also discussed various strategies to increase the radiosensitivity in ESCC cells under clinical settings.


Assuntos
Carcinoma de Células Escamosas do Esôfago/radioterapia , RNA Antissenso/genética , RNA Longo não Codificante/genética , RNA Neoplásico/genética , Dano ao DNA , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/terapia , Regulação Neoplásica da Expressão Gênica , Terapia Genética , Humanos , MicroRNAs/genética , Terapia de Alvo Molecular , RNA Antissenso/uso terapêutico , RNA Longo não Codificante/uso terapêutico , Tolerância a Radiação/genética
10.
Biochem Pharmacol ; 207: 115372, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493845

RESUMO

Long non-coding RNAs have been demonstrated to promote proliferation and metastasis via regulating the miRNA/mRNA regulatory axis in various malignancies. Based on our preliminary study, we investigated the mechanism of LINC00324 through miR-493-5p/MAPK1 in esophageal squamous cell carcinoma (ESCC) pathogenesis. Herein, we confirmed that LINC00324 is significantly upregulated in ESCC primary cells and esophageal squamous cell carcinoma cell line KYSE-70. Silencing of LINC00324 modulates cell proliferation markers, p21, p27, c-Myc, and Cyclin D1 and epithelial-to-mesenchymal transition markers, slug, snail, ZEB1, vimentin, ZO-1, and E-cadherin protein expression in ESCC. Through bioinformatics and dual luciferase reporter assays, we identified miR-493-5p as the direct target molecule of LINC00324. We further revealed that LINC00324 negatively regulates miR-493-5p expression in ESCC. Moreover, our multiple gain-and loss-of-functional experiments proved that a combination of miR-493-5p and LINC00324 significantly rescued ESCC cell proliferation and metastatic phenotypes. Mechanistically, LINC00324 promotes ESCC pathogenesis by acting as a competing endogenous RNA and sponges miR-493-5p activity thereby activating MAPK1 during ESCC progression. We believe that targeting LINC00324 /miR-493-5p/MAPK1 axis may provide new therapeutic avenues for ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Sistema de Sinalização das MAP Quinases , MicroRNAs , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais/genética , Sistema de Sinalização das MAP Quinases/genética
11.
Transl Oncol ; 27: 101573, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36335706

RESUMO

Unfortunately, despite the severe problem associated with salivary adenoid cystic carcinoma (SACC), it has not been studied in detail yet. Therefore, the time has come to understand the oncogenic cause of SACC and find the correct molecular markers for diagnosis, prognosis, and therapeutic target to tame this disease. Recently, we and others have suggested that non-coding RNAs, specifically microRNAs and long non-coding RNAs, can be ideal biomarkers for cancer(s) diagnosis and progression. Herein, we have shown that various miRNAs, like miR-155, miR­103a­3p, miR-21, and miR-130a increase the oncogenesis process, whereas some miRNAs such as miR-140-5p, miR-150, miR-375, miR-181a, miR-98, miR-125a-5p, miR-582-5p, miR-144-3p, miR-320a, miR-187 and miR-101-3p, miR-143-3p inhibit the salivary adenoid cystic carcinoma progression. Furthermore, we have found that miRNAs also target many vital genes and pathways like mitogen-activated protein kinases-snail family transcriptional repressor 2 (MAPK-Snai2), p38/JNK/ERK, forkhead box C1 protein (FOXC1), mammalian target of rapamycin (mTOR), integrin subunit beta 3 (ITGB3), epidermal growth factor receptor (EGFR)/NF-κB, programmed cell death protein 4 (PDCD4), signal transducer and activator of transcription 3 (STAT3), neuroblastoma RAS (N-RAS), phosphatidylinositol-3-kinase (PI3K)/Akt, MEK/ERK, ubiquitin-like modifier activating enzyme 2 (UBA2), tumor protein D52 (TPD52) which play a crucial role in the regulation of salivary adenoid cystic carcinoma. Therefore, we believe that knowledge from this manuscript will help us find the pathogenesis process in salivary adenoid cystic carcinoma and could also give us better biomarkers of diagnosis and prognosis of the disease.

12.
Front Med (Lausanne) ; 10: 1207993, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37700769

RESUMO

Psoriasis is a chronic inflammatory skin disease with keratinocyte hyperproliferation and T cells as key mediators of lesional and systemic inflammatory changes. To date, no suitable differential biomarkers are available for the disease diagnosis. More recently, microRNAs have been identified as critical regulators of lesional and systemic immune changes in psoriasis with diagnostic potential. We have performed expression profiling of T cell-specific miRNAs in 38 plasma samples from psoriasis vulgaris patients and an equal number of age- and gender-matched healthy subjects. Our findings have identified a panel of five blood-based circulatory miRNAs with a significant change in their expression levels, comprising miR-215, miR-148a, miR-125b-5p, miR-223, and miR-142-3p, which can differentiate psoriasis vulgaris patients from healthy individuals. The receiver operating characteristic (ROC) curves for all five miRNAs individually and in combination exhibited a significant disease discriminatory area under the curve with an AUC of 0.762 and a p < 0.0001 for all the miRNAs together. Statistically, all five miRNAs in combination depicted the best-fit model in relation to disease severity (PASI) compared with individual miRNAs, with the highest R2 value of 0.94 and the lowest AIC score of 131.8. Each of the miRNAs also exhibited a significant association with at least one of the other miRNAs in the panel. Importantly, the five miRNAs in the panel regulate one or more immune-inflammation pathways based on target prediction, pathway network analysis, and validated roles in the literature. The miRNA panel provides a rationalized combination of biomarkers that can be tested further on an expanded cohort of patients for their diagnostic value.

13.
Transl Oncol ; 27: 101596, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36473401

RESUMO

Cancer prevalence and its rate of incidence are constantly rising since the past few decades. Owing to the toxicity of present-day antineoplastic drugs, it is imperative to explore safer and more effective molecules to combat and/or prevent this dreaded disease. Flavonoids, a class of polyphenols, have exhibited multifaceted implications against several diseases including cancer, without showing significant toxicity towards the normal cells. Shredded pieces of evidence suggest that flavonoids can enhance drug sensitivity and suppress proliferation, metastasis, and angiogenesis of cancer cells by modulating several oncogenic or oncosuppressor microRNAs (miRNAs, miRs). They play pivotal roles in regulation of various biological and pathological processes, including various cancers. In the present review, the structure, chemistry and miR targeting efficacy of quercetin, luteolin, silibinin, genistein, epigallocatechin gallate, and cyanidin against several cancer types are comprehensively discussed. miRs are considered as next-generation medicine of recent times, and their targeting by naturally occurring flavonoids in cancer cells could be deemed as a signature step. We anticipate that our compilations related to miRNA-mediated regulation of cancer cells by flavonoids might catapult the clinical investigations and affirmation in the future.

14.
J Alzheimers Dis ; 96(4): 1339-1352, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37980674

RESUMO

The population of Nepal is rapidly aging, as in other low and middle-income countries, and the number of individuals living with Alzheimer's Disease and related dementias (ADRD) is expected to increase. However, information about the neuropsychological assessment of ADRD in Nepal is lacking. We first aimed to examine the needs, challenges, and opportunities associated with the neuropsychological assessment of older adults in Nepal for population-based ADRD ascertainment. Second, we introduce the Chitwan Valley Family Study-Study of Cognition and Aging in Nepal (CVFS-SCAN), which is poised to address these needs, and its collaboration with the Harmonized Cognitive Assessment Protocol (HCAP) international network. We reviewed the existing literature on the prevalence, risk factors, available neuropsychological assessment instruments, and sociocultural factors that may influence the neuropsychological assessment of older adults for ADRD ascertainment in Nepal. Our review revealed no existing population-based data on the prevalence of ADRD in Nepal. Very few studies have utilized formal cognitive assessment instruments for ADRD assessment, and there have been no comprehensive neuropsychological assessment instruments that have been validated for the assessment of ADRD in Nepal. We describe how the CVFS-SCAN study will address this need through careful adaptation of the HCAP instrument. We conclude that the development of culturally appropriate neuropsychological assessment instruments is urgently needed for the population-based assessment of ADRD in Nepal. The CVFS-SCAN is designed to address this need and will contribute to the growth of global and equitable neuropsychology and to the science of ADRD in low- and middle-income countries.


Assuntos
Doença de Alzheimer , Demência , Humanos , Idoso , Demência/diagnóstico , Demência/epidemiologia , Nepal/epidemiologia , Doença de Alzheimer/epidemiologia , Envelhecimento , Testes Neuropsicológicos
15.
Biomark Med ; 17(18): 767-781, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-38095986

RESUMO

A specialized biomarker(s) for lung cancer is imperative owing to its high mortality. Continuing our earlier work demonstrating the role of miR-320a as a tumor suppressor, here we discuss the most recent updates on miR-320a in lung cancer pathogenesis. We found that miR-320a modulates levels of diverse cancer-associated molecules and signaling pathways, and is also involved in modulating the immune microenvironment of lung cancer during its pathogenesis. We also discuss how miR-320a encapsulated in exosomes inhibits invasive phenotypes of lung cancer. Therefore, based on the multimodal role of miR-320a in lung cancer development and progression, we believe that miR-320a may be utilized as a potential diagnostic/prognostic marker and therapeutic target for lung cancer patients.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Microambiente Tumoral
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 280: 121576, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-35785710

RESUMO

Exploring the potential of non-noble metal substrates for Surface-enhanced Raman spectroscopy (SERS) has attracted considerable interest in recent years. In this work, we prepared nanoplate ß-Bi2O3/Bi2O2CO3 heterostructure via calcination of Bi2O2CO3 precursor using a facile hydrothermal process and successfully demonstrated its use as a novel SERS substrate. The SERS sensitivity of substrate was performed by probing methyl orange (MO), rhodamine B (RhB), vitamin C (Vit. C), and melamine. The observed results show that the SERS signal is enhanced considerably by the adsorption of probe molecules on the surface of the Bismuth heterostructure SERS substrate.


Assuntos
Nanopartículas Metálicas , Análise Espectral Raman , Adsorção , Bismuto , Nanopartículas Metálicas/química , Prata/química , Análise Espectral Raman/métodos
17.
Int J Breast Cancer ; 2022: 4958580, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655582

RESUMO

Background: The frozen section (FS) has been a good technique in surgical management of breast lesions since many years. But complete agreement and cooperation have not been achieved everywhere among surgeons and pathologists especially in the developing countries. FS undergoes continuous criticism due to various shortcomings but continued to be evaluated especially in developing countries. Objectives: This review was conducted to synthesize information on the use of frozen section in carcinoma breast. Data Sources. The MEDLINE database for frozen section since its origin and its implication in recent breast surgery techniques was studied. Study Eligibility Criteria. Sixty-five articles were reviewed with complete analysis on FS in both benign and malignant breast lesions. Study Appraisal and Synthesis Methods. The analysis of frozen section was done as a diagnostic tool in breast lesions, margin status in breast conservative surgery in carcinoma breast, and sentinel lymph node and use of immunohistochemistry for sentinel lymph node FS. Results: It was analysed that the FS gives accurate results in margin status analysis, decreasing rerecurrence. Conclusion: The accuracy of FSA, low recurrence rate, avoidance of reoperation, and good cosmesis are the key points of its use in breast conservative surgery. Its use in sentinel lymph node biopsy (SLNB) is equivocal. However, application of immunohistochemistry on frozen section of SLNB is an evolving trend in today's era.

18.
Biomed Res Int ; 2022: 5061112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046444

RESUMO

Weighted MR images of 421 patients with nasopharyngeal cancer were obtained at the head and neck level, and the tumors in the images were assessed by two expert doctors. 346 patients' multimodal pictures and labels served as training sets, whereas the remaining 75 patients' multimodal images and labels served as independent test sets. Convolutional neural network (CNN) for modal multidimensional information fusion and multimodal multidimensional information fusion (MMMDF) was used. The three models' performance is compared, and the findings reveal that the multimodal multidimensional fusion model performs best, while the two-modal multidimensional information fusion model performs second. The single-modal multidimensional information fusion model has the poorest performance. In MR images of nasopharyngeal cancer, a convolutional network can precisely and efficiently segment tumors.


Assuntos
Processamento de Imagem Assistida por Computador , Neoplasias Nasofaríngeas , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/diagnóstico por imagem , Redes Neurais de Computação , Tomografia Computadorizada por Raios X/métodos
19.
J Demogr Economics ; 88(1): 79-120, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36313399

RESUMO

In this study, we produce a valid and consistent variable for socioeconomic status at the household level with census microdata from ten developing countries available from the Integrated Public Use Microdata Series - International (IPUMS-I), the world's largest census database. We use principal components analysis to compute a wealth index based on asset ownership, utilities, and dwelling characteristics. We validate the index by verifying socioeconomic gradients on school enrollment and educational attainment. Given that the availability of socioeconomic indicators varies considerably across samples of census microdata, we implement a stepwise elimination procedure on the wealth index to identify the conditions that produce an internally consistent index. Using the results of the stepwise methodology, we propose which indicators are most important in measuring household socioeconomic status. The development of the asset index for such a large archive of international census microdata is a very useful public resource for researchers.

20.
Curr Oncol ; 29(4): 2326-2349, 2022 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-35448163

RESUMO

Despite the availability of modern techniques for the treatment of esophageal squamous cell carcinoma (ESCC), tumor recurrence and metastasis are significant challenges in clinical management. Thus, ESCC possesses a poor prognosis and low five-year overall survival rate. Notably, the origin and recurrence of the cancer phenotype are under the control of complex cancer-related signaling pathways. In this review, we provide comprehensive knowledge about long non-coding RNAs (lncRNAs) related to Wnt/ß-catenin and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway in ESCC and its implications in hindering the efficacy of chemotherapeutic drugs. We observed that a pool of lncRNAs, such as HERES, TUG1, and UCA1, associated with ESCC, directly or indirectly targets various molecules of the Wnt/ß-catenin pathway and facilitates the manifestation of multiple cancer phenotypes, including proliferation, metastasis, relapse, and resistance to anticancer treatment. Additionally, several lncRNAs, such as HCP5 and PTCSC1, modulate PI3K/Akt/mTOR pathways during the ESCC pathogenesis. Furthermore, a few lncRNAs, such as AFAP1-AS1 and LINC01014, block the efficiency of chemotherapeutic drugs, including cisplatin, 5-fluorouracil, paclitaxel, and gefitinib, used for ESCC treatment. Therefore, this review may help in designing a better therapeutic strategy for ESCC patients.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , RNA Longo não Codificante , Linhagem Celular Tumoral , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Recidiva Local de Neoplasia/genética , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/uso terapêutico , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/uso terapêutico , beta Catenina/genética , beta Catenina/metabolismo , beta Catenina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA