Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Molecules ; 28(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37764279

RESUMO

A novel series of nitrostyrene-based spirooxindoles were synthesized via the reaction of substituted isatins 1a-b, a number of α-amino acids 2a-e and (E)-2-aryl-1-nitroethenes 3a-e in a chemo/regio-selective manner using [3+2] cycloaddition (Huisgen) reaction under microwave irradiation conditions. The structure elucidation of all the synthesized spirooxindoles were done using 1H and 13C NMR and HRMS spectral analysis. The single crystal X-ray crystallographic study of compound 4l was used to assign the stereochemical arrangements of the groups around the pyrrolidine ring in spiro[pyrrolidine-2,3'-oxindoles] skeleton. The in vitro anticancer activity of spiro[pyrrolidine-2,3'-oxindoles] analogs 4a-w against human lung (A549) and liver (HepG2) cancer cell lines along with immortalized normal lung (BEAS-2B) and liver (LO2) cell lines shows promising results. Out of the 23 synthesized spiro[pyrrolidine-2,3'-oxindoles], while five compounds (4c, 4f, 4m, 4q, 4t) (IC50 = 34.99-47.92 µM; SI = 0.96-2.43) displayed significant in vitro anticancer activity against human lung (A549) cancer cell lines, six compounds (4c, 4f, 4k, 4m, 4q, 4t) (IC50 = 41.56-86.53 µM; SI = 0.49-0.99) displayed promising in vitro anticancer activity against human liver (HepG2) cancer cell lines. In the case of lung (A549) cancer cell lines, these compounds were recognized to be more efficient and selective than standard reference artemisinin (IC50 = 100 µM) and chloroquine (IC50 = 100 µM; SI: 0.03). However, none of them were found to be active as compared to artesunic acid [IC50 = 9.85 µM; SI = 0.76 against lung (A549) cancer cell line and IC50 = 4.09 µM; SI = 2.01 against liver (HepG2) cancer cell line].


Assuntos
Antifibrinolíticos , Micro-Ondas , Humanos , Oxindóis , Fígado , Aminoácidos
2.
Antimicrob Agents Chemother ; 66(6): e0207321, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35604213

RESUMO

Novel neplanocin A derivatives have been identified as potent and selective inhibitors of hepatitis B virus (HBV) replication in vitro. These include (1S,2R,5R)-5-(5-bromo-4-methyl-7H-pyrrolo[2,3-d]-pyrimidin-7-yl)-3-(hydroxymethyl)cyclopent-3-ene-1,2-diol (AR-II-04-26) and (1S,2R,5R)-5-(4-amino-3-iodo-1H-pyrazolo[3,4-d]pyrimidin-1-yl)-3-(hydroxylmethyl)cyclopent-3-ene-1,2-diol (MK-III-02-03). The 50% effective concentrations of AR-II-04-26 and MK-III-02-03 were 0.77 ± 0.23 and 0.83 ± 0.36 µM in HepG2.2.15.7 cells, respectively. These compounds reduced intracellular HBV RNA levels in HepG2.2.15.7 cells and infected primary human hepatocytes. Accordingly, they could reduce HBs and HBe antigen production in the culture supernatants, which was not observed with clinically approved anti-HBV nucleosides and nucleotides (reverse transcriptase inhibitors). The neplanocin A derivatives also inhibited HBV RNA derived from cccDNA. In addition, unlike neplanocin A itself, the compounds did not inhibit S-adenosyl-l-homocysteine hydrolase activity. Thus, it appears that the mechanism of action of AR-II-04-26 and MK-III-02-03 differs from that of the clinically approved anti-HBV agents. Although their exact mechanism (target molecule) remains to be elucidated, the novel neplanocin A derivatives are considered promising candidate drugs for inhibition of HBV replication.


Assuntos
Vírus da Hepatite B , Hepatite B , Adenosina/análogos & derivados , Antivirais/farmacologia , DNA Viral , Hepatite B/tratamento farmacológico , Humanos , RNA , Replicação Viral
3.
Org Biomol Chem ; 20(23): 4746-4752, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35612901

RESUMO

In the current research, we envisaged the synthesis of bis-heterocycles containing the dihydroisoxazole ring by [3 + 2] cycloaddition of VECs (vinyl ethylene carbonates) and nitrile oxides, assisted by a Pd catalyst. Herein we explored hydroximoyl chlorides as versatile precursors for the in situ generation of nitrile oxides that were exploited to achieve the cycloaddition reaction on a vinyl group of VECs to generate bis-heterocycles. In silico-based studies of bis-heterocycles on the cyclooxygenase (COX) enzyme displayed selective COX-2 inhibition.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Nitrilas , Reação de Cicloadição , Inibidores de Ciclo-Oxigenase 2/farmacologia , Estrutura Molecular , Óxidos
4.
Org Biomol Chem ; 20(46): 9241, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36385579

RESUMO

Correction for 'Pd-Catalysed [3 + 2]-cycloaddition towards the generation of bioactive bis-heterocycles/identification of COX-2 inhibitors via in silico analysis' by Elagandhula Sathish et al., Org. Biomol. Chem., 2022, 20, 4746-4752, https://doi.org/10.1039/D2OB00467D.

5.
Bioorg Med Chem ; 56: 116612, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35026631

RESUMO

Continuing on our antiviral drug discovery research, we intended to diversify our lead anti-HIV-1 inhibitor by non-classical isosteric replacement of amide to 1,2,4-oxadiazoles. The resulting molecules isoxazole-1,2,4-oxadiazole analogs were synthesized using mild bases in ethanol under microwave irradiation. The anti-HIV potential was checked in human CD4+ reporter cell lines, TZM-bl and CEM-GFP, at the highest non-cytotoxic concentration (HNC), demonstrating that 3-((3-(p-tolyl)isoxazol-5-yl)methyl)-1,2,4-oxadiazole and 3-((3-(4-chlorophenyl)isoxazol-5-yl)methyl)-1,2,4-oxadiazole inhibit HIV-1 replication significantly and could be considered as a new lead candidate against HIV-1.


Assuntos
Fármacos Anti-HIV/farmacologia , HIV-1/efeitos dos fármacos , Isoxazóis/farmacologia , Oxidiazóis/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Isoxazóis/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/química , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
6.
Bioorg Chem ; 114: 105114, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34243073

RESUMO

We herein report a new synthetic route for a series of unreported 1,4-dihydropyrazolo[4,3-b]indoles (6-8) via deoxygenation of o-nitrophenyl-substituted N-aryl pyrazoles and subsequent intramolecular (sp2)-N bond formation under microwave irradiation expedite modified Cadogan condition. This method allows access to NH-free as well as N-substituted fused indoles. DFT study and controlled experiments highlighted the role of nitrene insertion as one of the plausible reaction mechanisms. Furthermore, the target compounds exhibited cytotoxicity at low micromolar concentration against lung (A549), colon (HCT-116), and breast (MDA-MB-231, and MCF-7) cancer cell lines, induced the ROS generation and altered the mitochondrial membrane potential of highly aggressive MDA-MB-231 cells. Further investigations revealed that these compounds were selective Topo I (6h) or Topo II (7a, 7b) inhibitors.


Assuntos
Antineoplásicos/farmacologia , Teoria da Densidade Funcional , Iminas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Iminas/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Simulação de Acoplamento Molecular , Estrutura Molecular , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
7.
Bioorg Chem ; 94: 103409, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31732194

RESUMO

In the quest to ameliorate the camptothecin (CPT) downsides, we expedite to search for stable non-CPT analogues among 11 motifs of pyrazoloquinazolines reported. E-pharmacophore drug design approach helped filtering out pyrazolo[1,5-c]quinazolines as Topoisomerase I (TopoI) 'interfacial' inhibitors. Three compounds, 3c, 3e, and 3l were shown to be potent non-intercalating inhibitors of TopoI specifically and showed cancer cell-specific cytotoxicity in lung, breast and colon cancer cell lines. The compounds induced cell cycle arrest at S-phase, mitochondrial cell death pathway and modulated oxidative stress in cancer cells. Furthermore, a preliminary study was conducted to explore the feasibility of these compounds to be developed as dual TopoI-HDAC1 (histone deacetylase 1) inhibitors (4a) to combat resistance. Compound 4a was found to possess dual inhibitory capabilities in-vitro. Cytotoxic potential of 4a was found to be significantly higher than parent compound in 2D as well as 3D cancer cell models. Probable binding modes of 4a with TopoI and HDAC1 active sites were examined by molecular modelling.


Assuntos
DNA Topoisomerases Tipo I/efeitos dos fármacos , Inibidores Enzimáticos/uso terapêutico , Histona Desacetilases/efeitos dos fármacos , Quinazolinas/uso terapêutico , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Quinazolinas/química
8.
J Org Chem ; 83(16): 9530-9537, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30037227

RESUMO

A rapid and efficient synthesis of aminotetrazole from aryl azides, isocyanides, and TMSN3 is developed. The reaction is promoted by sequential Pd(0)/Fe(III) catalysis. The reaction sequence utilizes the Pd-catalyzed azide-isocyanide denitrogenative coupling reaction to generate unsymmetric carbodiimide in situ, which reacts with TMSN3 in the presence of FeCl3 in a single pot. The methodology has distinct advantages over traditional synthetic approaches where toxic Hg and Pb salts are employed at stoichiometric scale.

9.
Org Biomol Chem ; 16(37): 8263-8266, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30206628

RESUMO

A novel and efficient metal free, redox-neutral method for the synthesis of secondary thiocarbamates by cross-coupling of readily available thiophenol and isocyanides has been developed. The present methodology exhibits a broad substrate scope with good to excellent yields without an additive/extra oxidant under mild reaction conditions catalyzed by inexpensive iodine as the catalyst.

10.
Bioorg Med Chem Lett ; 26(16): 3945-9, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27426303

RESUMO

The potential antiviral activity of aristeromycin type of derivatives (I) is limited by associated toxicity due to its possible 5'-O-phosphorylation and S-adenosyl-l-homocysteine hydrolase (SAHase) inhibitory activity. Aristeromycin structure has major pharmacophoric motif as 5'-OH and adenosine base, which may have significant role in enzyme binding followed by activity and or toxicity. Thus, the structural optimization to alter this major motif by replacing with its bioisostere and changing the 5'-O conformation through stereochemistry reversal was of interest. Thus, the inverted stereochemistry at 4'-position coupled with bioisostere of adenosine base in the target compounds (6-7) to access antiviral potential. The stereoselective formation of a key stereoisomer (2a) was achieved exclusively from neplanocin sugar (1a) by reduction in a single step. The novel target molecules (6-7) were synthesized in 4 steps with 55-62% yield. Compound 6 was analyzed by single crystal X-ray diffraction, which confirms the stereoselective formation of α-analogs with highly puckered cyclopentane ring and 2'-endo conformation. The compound 6 shown significant anti-hepatitis B virus activity of 6.5µM with CC50>100µM and yielded a promising lead with novel structural feature.


Assuntos
Adenosina/análogos & derivados , Antivirais/síntese química , Ciclopentanos/síntese química , Vírus da Hepatite B/fisiologia , Pirimidinas/síntese química , Adenosina/síntese química , Adenosina/química , Adenosina/farmacologia , Antivirais/química , Antivirais/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Ciclopentanos/química , Ciclopentanos/farmacologia , Humanos , Conformação Molecular , Pirimidinas/química , Pirimidinas/farmacologia , Estereoisomerismo , Replicação Viral/efeitos dos fármacos
11.
Biopolymers ; 103(1): 15-22, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25091206

RESUMO

Calsequestrin (CASQ) exists as two distinct isoforms CASQ1 and CASQ2 in all vertebrates. Although the isoforms exhibit unique functional characteristic, the structural basis for the same is yet to be fully defined. Interestingly, the C-terminal region of the two isoforms exhibit significant differences both in length and amino acid composition; forming Dn-motif and DEXn-motif in CASQ1 and CASQ2, respectively. Here, we investigated if the unique C-terminal motifs possess Ca(2+)-sensitivity and affect protein function. Sequence analysis shows that both the Dn- and DEXn-motifs are intrinsically disordered regions (IDRs) of the protein, a feature that is conserved from fish to man. Using purified synthetic peptides, we show that these motifs undergo distinctive Ca(2+)-mediated folding suggesting that these disordered motifs are Ca(2+)-sensitivity. We generated chimeric proteins by swapping the C-terminal portions between CASQ1 and CASQ2. Our studies show that the C-terminal portions do not play significant role in protein folding. An interesting finding of the current study is that the switching of the C-terminal portion completely reverses the polymerization kinetics. Collectively, these data suggest that these Ca(2+)-sensitivity IDRs located at the back-to-back dimer interface influence isoform-specific Ca(2+)-dependent polymerization properties of CASQ.


Assuntos
Proteínas de Ligação ao Cálcio/química , Cálcio/química , Calsequestrina/química , Isoformas de Proteínas/química , Dicroísmo Circular , Polimerização , Estrutura Terciária de Proteína
12.
Bioorg Med Chem Lett ; 25(22): 5224-7, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26483202

RESUMO

Hepatitis C Virus exhibits high genetic diversity. The current treatment for genotype-1 with ∼80% sustained virologic responses is a combination of pegylated interferon, ribavirin and boceprevir/telaprevir/simeprevir which is associated with several side effects and need close monitoring. Therefore, novel therapies are invited for safer and more efficient treatment. This study was designed for synthesis of new α-pyranone carboxamide analogs for evaluation of anti-HCV activity to delineate structure-activity relationship (SAR) and to identify anti-HCV determinant motif on this new scaffold. Forty four new α-pyranone carboxamide analogs were synthesized. Six potential anti-HCV candidates 11a (EC50=0.35 µM), 11e (EC50=0.48 µM), 12f (EC50=0.47 µM), 12g (EC50=0.39 µM), 12h (EC50=0.20 µM) and 12j (EC50=0.25 µM) with lower cytotoxicity (CC50>20 µM) were discovered through cell based HCV replicon system. The activity profile of forty four new α-pyranone carboxamide analogs suggests the role of an aromatic motif in the B region to add a synergistic effect to NHOH motif at 4-position and revels an anti-HCV activity determinants motif under this scaffold. The biochemical assay against most promising HCV target protein 'NS3 protease and NS5B polymerase' showed no activity and open a scope to explore new mechanism inhibitor.


Assuntos
Amidas/síntese química , Antivirais/síntese química , Hepacivirus/efeitos dos fármacos , Pironas/síntese química , Amidas/farmacologia , Antivirais/farmacologia , Linhagem Celular , Humanos , Pironas/farmacologia , Relação Estrutura-Atividade
13.
Sci Rep ; 14(1): 12868, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834690

RESUMO

Acute myeloid leukemia (AML) is fatal in the majority of adults. Identification of new therapeutic targets and their pharmacologic modulators are needed to improve outcomes. Previous studies had shown that immunization of rabbits with normal peripheral WBCs that had been incubated with fluorodinitrobenzene elicited high titer antibodies that bound to a spectrum of human leukemias. We report that proteomic analyses of immunoaffinity-purified lysates of primary AML cells showed enrichment of scaffolding protein IQGAP1. Immunohistochemistry and gene-expression analyses confirmed IQGAP1 mRNA overexpression in various cytogenetic subtypes of primary human AML compared to normal hematopoietic cells. shRNA knockdown of IQGAP1 blocked proliferation and clonogenicity of human leukemia cell-lines. To develop small molecules targeting IQGAP1 we performed in-silico screening of 212,966 compounds, selected 4 hits targeting the IQGAP1-GRD domain, and conducted SAR of the 'fittest hit' to identify UR778Br, a prototypical agent targeting IQGAP1. UR778Br inhibited proliferation, induced apoptosis, resulted in G2/M arrest, and inhibited colony formation by leukemia cell-lines and primary-AML while sparing normal marrow cells. UR778Br exhibited favorable ADME/T profiles and drug-likeness to treat AML. In summary, AML shows response to IQGAP1 inhibition, and UR778Br, identified through in-silico studies, selectively targeted AML cells while sparing normal marrow.


Assuntos
Proliferação de Células , Leucemia Mieloide Aguda , Proteínas Ativadoras de ras GTPase , Humanos , Proteínas Ativadoras de ras GTPase/metabolismo , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/antagonistas & inibidores , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Simulação por Computador , Antineoplásicos/farmacologia , Domínios Proteicos , Animais , Proteômica/métodos
14.
Cancers (Basel) ; 15(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37444542

RESUMO

Small-molecule inhibitors of PD-L1 are postulated to control immune evasion in tumors similar to antibodies that target the PD-L1/PD-1 immune checkpoint axis. However, the identity of targetable PD-L1 inducers is required to develop small-molecule PD-L1 inhibitors. In this study, using chromatin immunoprecipitation (ChIP) assay and siRNA, we demonstrate that vitamin D/VDR regulates PD-L1 expression in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) cells. We have examined whether a VDR antagonist, MeTC7, can inhibit PD-L1. To ensure that MeTC7 inhibits VDR/PD-L1 without off-target effects, we examined competitive inhibition of VDR by MeTC7, utilizing ligand-dependent dimerization of VDR-RXR, RXR-RXR, and VDR-coactivators in a mammalian 2-hybrid (M2H) assay. MeTC7 inhibits VDR selectively, suppresses PD-L1 expression sparing PD-L2, and inhibits the cell viability, clonogenicity, and xenograft growth of AML cells. MeTC7 blocks AML/mesenchymal stem cells (MSCs) adhesion and increases the efferocytotic efficiency of THP-1 AML cells. Additionally, utilizing a syngeneic colorectal cancer model in which VDR/PD-L1 co-upregulation occurs in vivo under radiation therapy (RT), MeTC7 inhibits PD-L1 and enhances intra-tumoral CD8+T cells expressing lymphoid activation antigen-CD69. Taken together, MeTC7 is a promising small-molecule inhibitor of PD-L1 with clinical potential.

15.
Bioorg Med Chem Lett ; 22(24): 7742-7, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23122860

RESUMO

The structure-based approaches were implemented to design and rationally select the molecules for synthesis and anti-HCV activity evaluation. The systematic structure-activity relationships of previously discovered molecules (types I, II, III) were analyzed to design new molecules (type IV) by bioisosteric replacement of the amino group. The ligand conformation, binding mode studies and drug like properties were major determinant for selection of molecules for final synthesis. The replacement of amino group with methyl restored the interactions with RNA-template (Tem 799) through bifurcated weak H-bond (C-H...O). This is an interesting finding observed from molecular modeling studies. It was found that 6c-e has anti-HCV activity (EC(50) in 37-46 µM) while 6a, 6b and 6g were inactive. The compound 6f (EC(50) 28 µM) was the most active among the series however it also showed some cytotoxicity (CC(50) 52.8 µM). Except 6f, none of the compounds were found to be cytotoxic (CC(50)>100 µM). The present study discloses structure-based approach for novel anti-HCV lead discovery and opens a future scope of lead optimization.


Assuntos
Adenina/análogos & derivados , Adenina/farmacologia , Antivirais/farmacologia , Ácidos Carboxílicos/farmacologia , Hepacivirus/efeitos dos fármacos , Nucleosídeos/farmacologia , Adenina/síntese química , Adenina/química , Antivirais/síntese química , Antivirais/química , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/química , Química Farmacêutica , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Nucleosídeos/síntese química , Nucleosídeos/química , Relação Estrutura-Atividade
16.
Bioorg Med Chem Lett ; 22(19): 6261-6, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22921079

RESUMO

Several options for treating Herpes Simplex Virus type 1 and type 2 are available. However, non-specific inhibition and drug resistance warrants the discovery of new anti-herpetic compounds with better therapeutic profile or different mode of action. The non-nucleoside inhibitors of HSV DNA polymerase target the site that is less important for the binding of a natural nucleoside or nucleoside inhibitors. In the present study, we have explored the possibility to find a new lead molecule based on α-pyrone analogs as non-nucleoside inhibitors using structure based modeling approach. The designed molecules were synthesized and evaluated for anti-HSV activity using MTT assay. The compound 5h with EC(50) 7.4µg/ml and CC(50) 52.5µg/ml was moderately active against HSV when compared to acyclovir. A plaque reduction assay was also carried out and results reveal that 5h is more effective against HSV-1 with better selective index of 12.8 than against HSV-2 (SI=3.6). The synthesized compounds were also evaluated for anti-HIV activity, but none were active.


Assuntos
Antivirais/farmacologia , Desenho de Fármacos , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Pironas/farmacologia , Antivirais/síntese química , Antivirais/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Pironas/síntese química , Pironas/química , Relação Estrutura-Atividade
17.
Biochem J ; 435(2): 391-9, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21265816

RESUMO

CASQ (calsequestrin) is a Ca2+-buffering protein localized in the muscle SR (sarcoplasmic reticulum); however, it is unknown whether Ca2+ binding to CASQ2 is due to its location inside the SR rich in Ca2+ or due to its preference for Ca2+ over other ions. Therefore a major aim of the present study was to determine how CASQ2 selects Ca2+ over other metal ions by studying monomer folding and subsequent aggregation upon exposure to alkali (monovalent), alkaline earth (divalent) and transition (polyvalent) metals. We additionally investigated how CPVT (catecholaminergic polymorphic ventricular tachycardia) mutations affect CASQ2 structure and its molecular behaviour when exposed to different metal ions. Our results show that alkali and alkaline earth metals can initiate similar molecular compaction (folding), but only Ca2+ can promote CASQ2 to aggregate, suggesting that CASQ2 has a preferential binding to Ca2+ over all other metals. We additionally found that transition metals (having higher co-ordinated bonding ability than Ca2+) can also initiate folding and promote aggregation of CASQ2. These studies led us to suggest that folding and formation of higher-order structures depends on cationic properties such as co-ordinate bonding ability and ionic radius. Among the CPVT mutants studied, the L167H mutation disrupts the Ca2+-dependent folding and, when folding is achieved by Mn2+, L167H can undergo aggregation in a Ca2+-dependent manner. Interestingly, domain III mutants (D307H and P308L) lost their selectivity to Ca2+ and could be aggregated in the presence of Mg2+. In conclusion, these studies suggest that CPVT mutations modify CASQ2 behaviour, including folding, aggregation/polymerization and selectivity towards Ca2+.


Assuntos
Calsequestrina/metabolismo , Cátions/metabolismo , Proteínas Mutantes/metabolismo , Miocárdio/metabolismo , Taquicardia Ventricular/genética , Sequência de Aminoácidos , Cálcio/metabolismo , Cálcio/farmacologia , Calsequestrina/química , Calsequestrina/genética , Calsequestrina/fisiologia , Humanos , Metais Alcalinoterrosos/metabolismo , Metais Alcalinoterrosos/farmacologia , Modelos Moleculares , Técnicas de Sonda Molecular , Dados de Sequência Molecular , Proteínas Mutantes/análise , Mutação de Sentido Incorreto/fisiologia , Conformação Proteica/efeitos dos fármacos , Dobramento de Proteína , Multimerização Proteica/genética , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Especificidade por Substrato , Taquicardia Ventricular/metabolismo
18.
Curr Med Chem ; 29(4): 666-681, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33992054

RESUMO

Outbreaks due to Severe Acute Respiratory Syndrome-Corona virus 2 (SARSCoV- 2) initiated in Wuhan city, China, in December 2019 and continued to spread Internationally, posing a pandemic threat as declared by WHO and as of March 10, 2021, confirmed cases reached 118 million along with 2.6 million deaths worldwide. In the absence of specific antiviral medication, symptomatic treatment and physical isolation remain the options to control the disease and contagion. The recent clinical trials on antiviral drugs highlighted some promising compounds such as umifenovir (haemagglutininand has only 70% similarity to SAmediated fusion inhibitor), remdesivir (RdRp nucleoside inhibitor), and favipiravir (RdRp Inhibitor). WHO launched a multinational clinical trial on several promising analogs as a potential treatment to combat SARS infection. This situation urges a holistic approach to invent safe and specific drugs as a prophylactic and therapeutic cure for SARS-related viral diseases, including COVID-19. It is significant to note that researchers worldwide have been doing their best to handle the crisis and have produced an extensive and promising literature body. It opens a scope and allows understanding the viral entry at the molecular level. A structure-based approach can reveal the molecular-level understanding of viral entry interaction. The ligand profiling and non-covalent interactions among participating amino-acid residues are critical information to delineate a structural interpretation. The structural investigation of SARS virus entry into host cells will reveal the possible strategy for designing drugs like entry inhibitors. The structure-based approach demonstrates details at the 3D molecular level. It shows specificity about SARS-CoV-2 spike interaction, which uses human angiotensin-converting enzyme 2 (ACE2) as a receptor for entry, and the human protease completes the process of viral fusion and infection. The 3D structural studies reveal the existence of two units, namely S1 and S2. S1 is called a receptor-binding domain (RBD) and responsible for interacting with the host (ACE2), and the S2 unit participates in the fusion of viral and cellular membranes. TMPRSS2 mediates the cleavage at the S1/S2 subunit interface in the S-protein of SARS CoV-2, leading to viral fusion. Conformational difference associated with S1 binding alters ACE2 interaction and inhibits viral fusion. Overall, the detailed 3D structural studies help understand the 3D structural basis of interaction between viruses with host factors and open scope for the new drug discovery process targeting SARS-related virus entry into the host cell.


Assuntos
Tratamento Farmacológico da COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
19.
J Med Chem ; 65(8): 6039-6055, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35404047

RESUMO

Vitamin-D receptor (VDR) mRNA is overexpressed in neuroblastoma and carcinomas of lung, pancreas, and ovaries and predicts poor prognoses. VDR antagonists may be able to inhibit tumors that overexpress VDR. However, the current antagonists are arduous to synthesize and are only partial antagonists, limiting their use. Here, we show that the VDR antagonist MeTC7 (5), which can be synthesized from 7-dehydrocholesterol (6) in two steps, inhibits VDR selectively, suppresses the viability of cancer cell-lines, and reduces the growth of the spontaneous transgenic TH-MYCN neuroblastoma and xenografts in vivo. The VDR selectivity of 5 against RXRα and PPAR-γ was confirmed, and docking studies using VDR-LBD indicated that 5 induces major changes in the binding motifs, which potentially result in VDR antagonistic effects. These data highlight the therapeutic benefits of targeting VDR for the treatment of malignancies and demonstrate the creation of selective VDR antagonists that are easy to synthesize.


Assuntos
Neuroblastoma , Receptores de Calcitriol , Animais , Animais Geneticamente Modificados , Xenoenxertos , Humanos , Receptores de Calcitriol/antagonistas & inibidores , Receptores de Calcitriol/metabolismo , Vitaminas
20.
J Biol Chem ; 285(22): 17188-96, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20353949

RESUMO

Calsequestrin undergoes dynamic polymerization with increasing calcium concentration by front-to-front dimerization and back-to-back packing, forming wire-shaped structures. A recent finding that point mutation R33Q leads to lethal catecholaminergic polymorphic ventricular tachycardia (CPVT) implies a crucial role for the N terminus. In this study, we demonstrate that this mutation resides in a highly conserved alternately charged residue cluster (DGKDR; cluster 1) in the N-terminal end of calsequestrin. We further show that this cluster configures itself as a ring system and that the dipolar arrangement within the cluster brings about a critical conformational flip of Lys(31)-Asp(32) essential for dimer stabilization by formation of a H-bond network. We additionally show that Ca(2+)-induced calsequestrin aggregation is nonlinear and reversible and can regain the native conformation by Ca(2+) chelation with EGTA. This study suggests that cluster 1 works as a molecular switch and governs the bidirectional transition between the CASQ2 monomer and dimer. We further demonstrate that mutations disrupting the alternating charge pattern of the cluster, including R33Q, impair Ca(2+)-CASQ2 interaction, leading to altered polymerization-depolymerization dynamics. This study provides new mechanistic insight into the functional effects of the R33Q mutation and its potential role in CPVT.


Assuntos
Calsequestrina/metabolismo , Catecolaminas/metabolismo , Taquicardia Ventricular/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Caenorhabditis elegans , Cálcio/química , Cálcio/metabolismo , Quelantes/farmacologia , Ciona intestinalis , Biologia Computacional/métodos , Dimerização , Ácido Egtázico/química , Humanos , Ligação de Hidrogênio , Camundongos , Dados de Sequência Molecular , Mutação , Conformação Proteica , Ratos , Homologia de Sequência de Aminoácidos , Taquicardia Ventricular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA