Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
PLoS Genet ; 13(9): e1006966, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28863138

RESUMO

Mammalian genomes contain several dozens of large (>0.5 Mbp) lineage-specific gene loci harbouring functionally related genes. However, spatial chromatin folding, organization of the enhancer-promoter networks and their relevance to Topologically Associating Domains (TADs) in these loci remain poorly understood. TADs are principle units of the genome folding and represents the DNA regions within which DNA interacts more frequently and less frequently across the TAD boundary. Here, we used Chromatin Conformation Capture Carbon Copy (5C) technology to characterize spatial chromatin interaction network in the 3.1 Mb Epidermal Differentiation Complex (EDC) locus harbouring 61 functionally related genes that show lineage-specific activation during terminal keratinocyte differentiation in the epidermis. 5C data validated by 3D-FISH demonstrate that the EDC locus is organized into several TADs showing distinct lineage-specific chromatin interaction networks based on their transcription activity and the gene-rich or gene-poor status. Correlation of the 5C results with genome-wide studies for enhancer-specific histone modifications (H3K4me1 and H3K27ac) revealed that the majority of spatial chromatin interactions that involves the gene-rich TADs at the EDC locus in keratinocytes include both intra- and inter-TAD interaction networks, connecting gene promoters and enhancers. Compared to thymocytes in which the EDC locus is mostly transcriptionally inactive, these interactions were found to be keratinocyte-specific. In keratinocytes, the promoter-enhancer anchoring regions in the gene-rich transcriptionally active TADs are enriched for the binding of chromatin architectural proteins CTCF, Rad21 and chromatin remodeler Brg1. In contrast to gene-rich TADs, gene-poor TADs show preferential spatial contacts with each other, do not contain active enhancers and show decreased binding of CTCF, Rad21 and Brg1 in keratinocytes. Thus, spatial interactions between gene promoters and enhancers at the multi-TAD EDC locus in skin epithelial cells are cell type-specific and involve extensive contacts within TADs as well as between different gene-rich TADs, forming the framework for lineage-specific transcription.


Assuntos
Diferenciação Celular/genética , Cromatina/genética , DNA Helicases/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Animais , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular , Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Epiderme/metabolismo , Epigênese Genética , Genoma , Queratinócitos , Camundongos , Regiões Promotoras Genéticas , Pele/metabolismo
2.
Development ; 141(1): 101-11, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24346698

RESUMO

Chromatin structural states and their remodelling, including higher-order chromatin folding and three-dimensional (3D) genome organisation, play an important role in the control of gene expression. The role of 3D genome organisation in the control and execution of lineage-specific transcription programmes during the development and differentiation of multipotent stem cells into specialised cell types remains poorly understood. Here, we show that substantial remodelling of the higher-order chromatin structure of the epidermal differentiation complex (EDC), a keratinocyte lineage-specific gene locus on mouse chromosome 3, occurs during epidermal morphogenesis. During epidermal development, the locus relocates away from the nuclear periphery towards the nuclear interior into a compartment enriched in SC35-positive nuclear speckles. Relocation of the EDC locus occurs prior to the full activation of EDC genes involved in controlling terminal keratinocyte differentiation and is a lineage-specific, developmentally regulated event controlled by transcription factor p63, a master regulator of epidermal development. We also show that, in epidermal progenitor cells, p63 directly regulates the expression of the ATP-dependent chromatin remodeller Brg1, which binds to distinct domains within the EDC and is required for relocation of the EDC towards the nuclear interior. Furthermore, Brg1 also regulates gene expression within the EDC locus during epidermal morphogenesis. Thus, p63 and its direct target Brg1 play an essential role in remodelling the higher-order chromatin structure of the EDC and in the specific positioning of this locus within the landscape of the 3D nuclear space, as required for the efficient expression of EDC genes in epidermal progenitor cells during skin development.


Assuntos
Montagem e Desmontagem da Cromatina/genética , DNA Helicases/metabolismo , Células-Tronco Multipotentes/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Cromatina/metabolismo , DNA Helicases/genética , Células Epidérmicas , Epiderme/embriologia , Epiderme/metabolismo , Fator de Transcrição de Proteínas de Ligação GA/genética , Regulação da Expressão Gênica no Desenvolvimento , Queratinócitos/citologia , Queratinócitos/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Fosfoproteínas/genética , Ligação Proteica , Dobramento de Proteína , Interferência de RNA , RNA Interferente Pequeno , Ribonucleoproteínas/metabolismo , Fatores de Processamento de Serina-Arginina , Transativadores/genética , Fatores de Transcrição/genética , Transcrição Gênica
3.
Development ; 138(22): 4843-52, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22028024

RESUMO

The Lhx2 transcription factor plays essential roles in morphogenesis and patterning of ectodermal derivatives as well as in controlling stem cell activity. Here, we show that during murine skin morphogenesis, Lhx2 is expressed in the hair follicle (HF) buds, whereas in postnatal telogen HFs Lhx2(+) cells reside in the stem cell-enriched epithelial compartments (bulge, secondary hair germ) and co-express selected stem cell markers (Sox9, Tcf4 and Lgr5). Remarkably, Lhx2(+) cells represent the vast majority of cells in the bulge and secondary hair germ that proliferate in response to skin injury. This is functionally important, as wound re-epithelization is significantly retarded in heterozygous Lhx2 knockout (+/-) mice, whereas anagen onset in the HFs located closely to the wound is accelerated compared with wild-type mice. Cell proliferation in the bulge and the number of Sox9(+) and Tcf4(+) cells in the HFs closely adjacent to the wound in Lhx2(+/-) mice are decreased in comparison with wild-type controls, whereas expression of Lgr5 and cell proliferation in the secondary hair germ are increased. Furthermore, acceleration of wound-induced anagen development in Lhx2(+/-) mice is inhibited by administration of Lgr5 siRNA. Finally, Chip-on-chip/ChIP-qPCR and reporter assay analyses identified Sox9, Tcf4 and Lgr5 as direct Lhx2 targets in keratinocytes. These data strongly suggest that Lhx2 positively regulates Sox9 and Tcf4 in the bulge cells, and promotes wound re-epithelization, whereas it simultaneously negatively regulates Lgr5 in the secondary hair germ and inhibits HF cycling. Thus, Lhx2 operates as an important regulator of epithelial stem cell activity in the skin response to injury.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Epiderme/fisiologia , Folículo Piloso/metabolismo , Proteínas com Homeodomínio LIM/fisiologia , Receptores Acoplados a Proteínas G/genética , Regeneração/genética , Fatores de Transcrição SOX9/genética , Células-Tronco/fisiologia , Fatores de Transcrição/fisiologia , Animais , Animais Recém-Nascidos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células Cultivadas , Embrião de Mamíferos , Epiderme/lesões , Epiderme/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Folículo Piloso/citologia , Humanos , Proteínas com Homeodomínio LIM/antagonistas & inibidores , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Camundongos Transgênicos , RNA Interferente Pequeno/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Transcrição SOX9/metabolismo , Células-Tronco/metabolismo , Fator de Transcrição 4 , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cicatrização/efeitos dos fármacos , Cicatrização/genética
4.
Lancet Oncol ; 14(2): e50-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23369683

RESUMO

Hair loss can be a psychologically devastating adverse effect of chemotherapy, but satisfactory management strategies for chemotherapy-induced alopecia remain elusive. In this Review we focus on the complex pathobiology of this side-effect. We discuss the clinical features and current management approaches, then draw upon evidence from mouse models and human hair-follicle organ-culture studies to explore the main pathobiology principles and explain why chemotherapy-induced alopecia is so challenging to manage. P53-dependent apoptosis of hair-matrix keratinocytes and chemotherapy-induced hair-cycle abnormalities, driven by the dystrophic anagen or dystrophic catagen pathway, play important parts in the degree of hair-follicle damage, alopecia phenotype, and hair-regrowth pattern. Additionally, the degree of hair-follicle stem-cell damage determines whether chemotherapy-induced alopecia is reversible. We highlight the need for carefully designed preclinical research models to generate novel, clinically relevant pointers to how this condition may be overcome.


Assuntos
Alopecia/induzido quimicamente , Alopecia/patologia , Antineoplásicos/efeitos adversos , Alopecia/psicologia , Alopecia/terapia , Animais , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/crescimento & desenvolvimento , Humanos
5.
J Invest Dermatol ; 144(2): 378-386.e2, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37633457

RESUMO

Wound healing is a complex process involving phases of hemostasis, inflammation, proliferation, and remodeling. The regenerative process in the skin requires coordination between many regulators, including signaling molecules, transcription factors, and the epigenetic machinery. In this study, we show that chromatin regulators HDAC1 and LSD1, key components of the CoREST repressor complex, are upregulated in the regenerating epidermis during wound repair. We also show that corin, a synthetic dual inhibitor of the CoREST complex and HDAC1/LSD1 activities, significantly accelerates wound closure through enhanced re-epithelialization in a mouse tail wound model. Acetylated H3K9 (methylation of histone H3 at lysine 9) expression, a histone modification targeted by HDAC1, is increased in keratinocytes after topical treatment with 100 nM and 1 µM of corin. In vitro experiments demonstrate that corin promotes migration and inhibits the proliferation of human keratinocytes. Furthermore, expression levels of genes promoting keratinocyte migration, such as AREG, CD24, EPHB2, ITGAX, PTGS, SCT1, SERPINB2, SERPINE1, SLPI, SNAI2, and TWIST, increased in keratinocytes treated with corin. These data demonstrate that dual inhibition of class I histone deacetylases and LSD1 by corin may serve as a new approach for promoting wound re-epithelialization and provide a platform for further applications of corin for the treatment of chronic wounds.


Assuntos
Reepitelização , Pele , Camundongos , Animais , Humanos , Pele/lesões , Queratinócitos/metabolismo , Cicatrização/fisiologia , Modelos Animais de Doenças , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Movimento Celular
6.
J Cell Sci ; 124(Pt 20): 3399-404, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21984808

RESUMO

Bone morphogenetic proteins (BMPs) play essential roles in the control of skin development, postnatal tissue remodelling and tumorigenesis. To explore whether some of the effects of BMP signalling are mediated by microRNAs, we performed genome-wide microRNA (miRNA) screening in primary mouse keratinocytes after BMP4 treatment. Microarray analysis revealed substantial BMP4-dependent changes in the expression of distinct miRNAs, including miR-21. Real-time PCR confirmed that BMP4 dramatically inhibits miR-21 expression in the keratinocytes. Consistently, significantly increased levels of miR-21 were observed in transgenic mice overexpressing the BMP antagonist noggin under control of the K14 promoter (K14-noggin). By in situ hybridization, miR-21 expression was observed in the epidermis and hair follicle epithelium in normal mouse skin. In K14-noggin skin, miR-21 was prominently expressed in the epidermis, as well as in the peripheral portion of trichofolliculoma-like hair follicle-derived tumours that contain proliferating and poorly differentiated cells. By transfecting keratinocytes with a miR-21 mimic, we identified the existence of two groups of the BMP target genes, which are differentially regulated by miR-21. These included selected BMP-dependent tumour-suppressor genes (Pten, Pdcd4, Timp3 and Tpm1) negatively regulated by miR-21, as well as miR-21-independent Id1, Id2, Id3 and Msx2 that predominantly mediate the effects of BMPs on cell differentiation. In primary keratinocytes and HaCaT cells, miR-21 prevented the inhibitory effects of BMP4 on cell proliferation and migration. Thus, our study establishes a novel mechanism for the regulation of BMP-induced effects in the skin and suggests miRNAs are important modulators of the effects of growth factor signalling pathways on skin development and tumorigenesis.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Epiderme , Regulação Neoplásica da Expressão Gênica , Queratinócitos/metabolismo , MicroRNAs/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Transformação Celular Neoplásica/genética , Células Cultivadas , Epiderme/fisiologia , Epiderme/fisiopatologia , Genes Supressores de Tumor/fisiologia , Estudo de Associação Genômica Ampla , Queratina-14/genética , Queratinócitos/patologia , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , MicroRNAs/genética , Análise em Microsséries , Morfogênese/genética , Transdução de Sinais
7.
Sci Adv ; 9(2): eabo7605, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36630508

RESUMO

Execution of lineage-specific differentiation programs requires tight coordination between many regulators including Ten-eleven translocation (TET) family enzymes, catalyzing 5-methylcytosine oxidation in DNA. Here, by using Keratin 14-Cre-driven ablation of Tet genes in skin epithelial cells, we demonstrate that ablation of Tet2/Tet3 results in marked alterations of hair shape and length followed by hair loss. We show that, through DNA demethylation, Tet2/Tet3 control chromatin accessibility and Dlx3 binding and promoter activity of the Krt25 and Krt28 genes regulating hair shape, as well as regulate interactions between the Krt28 gene promoter and distal enhancer. Moreover, Tet2/Tet3 also control three-dimensional chromatin topology in Keratin type I/II gene loci via DNA methylation-independent mechanisms. These data demonstrate the essential roles for Tet2/3 in establishment of lineage-specific gene expression program and control of Dlx3/Krt25/Krt28 axis in hair follicle epithelial cells and implicate modulation of DNA methylation as a novel approach for hair growth control.


Assuntos
Diferenciação Celular , DNA , Dioxigenases , Regiões Promotoras Genéticas , Diferenciação Celular/genética , Cromatina/genética , Cromatina/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , DNA/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/metabolismo , Regiões Promotoras Genéticas/fisiologia
8.
J Invest Dermatol ; 142(1): 12-14, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34565558

RESUMO

Histone deacetylases (HDACs) induce gene repression and modify the activity of nonhistone proteins. In a new article in the Journal of Investigative Dermatology, Zhu et al. (2021) demonstrate essential roles for HDAC1/2 in maintaining keratinocyte proliferation and survival in adult epidermis and basal cell carcinoma, thus providing a rationale for using HDAC inhibitors for the treatment of hyperproliferative and neoplastic skin disorders.


Assuntos
Cromatina , Histona Desacetilases , Biologia , Cromatina/genética , Epiderme , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/genética , Homeostase
9.
J Invest Dermatol ; 142(11): 2853-2863.e4, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35691364

RESUMO

Naked mole-rats (NMRs) (Heterocephalus glaber) are long-lived mammals that possess a natural resistance to cancer and other age-related pathologies, maintaining a healthy life span >30 years. In this study, using immunohistochemical and RNA-sequencing analyses, we compare skin morphology, cellular composition, and global transcriptome signatures between young and aged (aged 3‒4 vs. 19‒23 years, respectively) NMRs. We show that similar to aging in human skin, aging in NMRs is accompanied by a decrease in epidermal thickness; keratinocyte proliferation; and a decline in the number of Merkel cells, T cells, antigen-presenting cells, and melanocytes. Similar to that in human skin aging, expression levels of dermal collagens are decreased, whereas matrix metalloproteinase 9 and matrix metalloproteinase 11 levels increased in aged versus in young NMR skin. RNA-sequencing analyses reveal that in contrast to human or mouse skin aging, the transcript levels of several longevity-associated (Igfbp3, Igf2bp3, Ing2) and tumor-suppressor (Btg2, Cdkn1a, Cdkn2c, Dnmt3a, Hic1, Socs3, Sfrp1, Sfrp5, Thbs1, Tsc1, Zfp36) genes are increased in aged NMR skin. Overall, these data suggest that specific features in the NMR skin aging transcriptome might contribute to the resistance of NMRs to spontaneous skin carcinogenesis and provide a platform for further investigations of NMRs as a model organism for studying the biology and disease resistance of human skin.


Assuntos
Proteínas Imediatamente Precoces , Envelhecimento da Pele , Animais , Humanos , Camundongos , Genes Supressores de Tumor , Proteínas de Homeodomínio/genética , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Longevidade/genética , Metaloproteinase 11 da Matriz/genética , Metaloproteinase 11 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Ratos-Toupeira/genética , Ratos-Toupeira/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , RNA/metabolismo , Envelhecimento da Pele/genética , Proteínas Supressoras de Tumor/genética
10.
FASEB J ; 24(10): 3869-81, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20522784

RESUMO

The hair follicle is a cyclic biological system that progresses through stages of growth, regression, and quiescence, which involves dynamic changes in a program of gene regulation. Micro-RNAs (miRNAs) are critically important for the control of gene expression and silencing. Here, we show that global miRNA expression in the skin markedly changes during distinct stages of the hair cycle in mice. Furthermore, we show that expression of miR-31 markedly increases during anagen and decreases during catagen and telogen. Administration of antisense miR-31 inhibitor into mouse skin during the early- and midanagen phases of the hair cycle results in accelerated anagen development, and altered differentiation of hair matrix keratinocytes and hair shaft formation. Microarray, qRT-PCR and Western blot analyses revealed that miR-31 negatively regulates expression of Fgf10, the components of Wnt and BMP signaling pathways Sclerostin and BAMBI, and Dlx3 transcription factor, as well as selected keratin genes, both in vitro and in vivo. Using luciferase reporter assay, we show that Krt16, Krt17, Dlx3, and Fgf10 serve as direct miR-31 targets. Thus, by targeting a number of growth regulatory molecules and cytoskeletal proteins, miR-31 is involved in establishing an optimal balance of gene expression in the hair follicle required for its proper growth and hair fiber formation.


Assuntos
Concentração de Íons de Hidrogênio
11.
Dev Cell ; 8(5): 665-76, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15866158

RESUMO

The Notch and Calcineurin/NFAT pathways have both been implicated in control of keratinocyte differentiation. Induction of the p21(WAF1/Cip1) gene by Notch 1 activation in differentiating keratinocytes is associated with direct targeting of the RBP-Jkappa protein to the p21 promoter. We show here that Notch 1 activation functions also through a second Calcineurin-dependent mechanism acting on the p21 TATA box-proximal region. Increased Calcineurin/NFAT activity by Notch signaling involves downregulation of Calcipressin, an endogenous Calcineurin inhibitor, through a HES-1-dependent mechanism. Besides control of the p21 gene, Calcineurin contributes significantly to the transcriptional response of keratinocytes to Notch 1 activation, both in vitro and in vivo. In fact, deletion of the Calcineurin B1 gene in the skin results in a cyclic alopecia phenotype, associated with altered expression of Notch-responsive genes involved in hair follicle structure and/or adhesion to the surrounding mesenchyme. Thus, an important interconnection exists between Notch 1 and Calcineurin-NFAT pathways in keratinocyte growth/differentiation control.


Assuntos
Calcineurina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Proteínas Nucleares/metabolismo , Receptores de Superfície Celular/metabolismo , Fatores de Transcrição/metabolismo , Alopecia/etiologia , Animais , Inibidores de Calcineurina , Proteínas de Ciclo Celular/genética , Diferenciação Celular , Divisão Celular , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21 , Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Fatores de Transcrição NFATC , Fenótipo , Regiões Promotoras Genéticas , Receptor Notch1 , Transdução de Sinais
12.
Am J Pathol ; 175(3): 1303-14, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19700758

RESUMO

Bone morphogenetic proteins (BMPs) play pivotal roles in the regulation of skin development. To study the role of BMPs in skin tumorigenesis, BMP antagonist noggin was used to generate keratin 14-targeted transgenic mice. In contrast to wild-type mice, transgenic mice developed spontaneous hair follicle-derived tumors, which resemble human trichofolliculoma. Global gene expression profiles revealed that in contrast to anagen hair follicles of wild-type mice, tumors of transgenic mice showed stage-dependent increases in the expression of genes encoding the selected components of Wnt and Shh pathways. Specifically, expression of the Wnt ligands increased at the initiation stage of tumor formation, whereas expression of the Wnt antagonist and tumor suppressor Wnt inhibitory factor-1 decreased, as compared with fully developed tumors. In contrast, expression of the components of Shh pathway increased in fully developed tumors, as compared with the tumor placodes. Consistent with the expression data, pharmacological treatment of transgenic mice with Wnt and Shh antagonists resulted in the stage-dependent inhibition of tumor initiation, and progression, respectively. Furthermore, BMP signaling stimulated Wnt inhibitory factor-1 expression and promoter activity in cultured tumor cells and HaCaT keratinocytes, as well as inhibited Shh expression, as compared with the corresponding controls. Thus, tumor suppressor activity of the BMPs in skin epithelium depends on the local concentrations of noggin and is mediated at least in part via stage-dependent antagonizing of Wnt and Shh signaling pathways.


Assuntos
Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Proteínas de Transporte/genética , Neoplasias Cutâneas/metabolismo , Adulto , Idoso , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Transporte/biossíntese , Transformação Celular Neoplásica , Feminino , Folículo Piloso/metabolismo , Folículo Piloso/patologia , Proteínas Hedgehog/metabolismo , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Transdução de Sinais/genética , Pele/metabolismo , Pele/patologia , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/patologia , Proteínas Wnt/metabolismo
14.
J Invest Dermatol ; 137(10): 2157-2167, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28595999

RESUMO

The maintenance of a proper nuclear architecture and three-dimensional organization of the genes, enhancer elements, and transcription machinery plays an essential role in tissue development and regeneration. Here we show that in the developing skin, epidermal progenitor cells of mice lacking p63 transcription factor display alterations in the nuclear shape accompanied by a marked decrease in expression of several nuclear envelope-associated components (Lamin B1, Lamin A/C, Sun1, Nesprin-3, Plectin) compared with controls. Furthermore, chromatin immunoprecipitation-quantitative PCR assay showed enrichment of p63 on Sun1, Syne3, and Plec promoters, suggesting them as p63 targets. Alterations in the nuclei shape and expression of nuclear envelope-associated proteins were accompanied by altered distribution patterns of the repressive histone marks trimethylation on lysine 27 of histone H3, trimethylation on lysine 9 of histone H3, and heterochromatin protein 1-alpha in p63-null keratinocytes. These changes were also accompanied by downregulation of the transcriptional activity and relocation of the keratinocyte-specific gene loci away from the sites of active transcription toward the heterochromatin-enriched repressive nuclear compartments in p63-null cells. These data demonstrate functional links between the nuclear envelope organization, chromatin architecture, and gene expression in keratinocytes and suggest nuclear envelope-associated genes as important targets mediating p63-regulated gene expression program in the epidermis.


Assuntos
Epiderme/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Queratinócitos/metabolismo , Fosfoproteínas/genética , Transativadores/genética , Animais , Diferenciação Celular , Núcleo Celular/metabolismo , Epiderme/patologia , Humanos , Queratinócitos/patologia , Camundongos , Modelos Animais , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Fosfoproteínas/biossíntese , RNA/genética , Transativadores/biossíntese , Fatores de Transcrição/genética , Transcrição Gênica
15.
J Invest Dermatol ; 136(3): 557-559, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26902124

RESUMO

Chemotherapy-induced hair loss is one of the most devastating side effects of cancer treatment. To study the effects of chemotherapeutic agents on the hair follicle, a number of experimental models have been proposed. Yoon et al. report that transplantation of human scalp hair follicles onto chemotherapy-treated immunodeficient mice serves as an excellent in vivo model for chemotherapy-induced hair loss. Yoon et al. demonstrate that (i) the response of human hair follicles grafted onto immunodeficient mice to cyclophosphamide resembles the key features of the chemotherapy-induced hair loss seen in patients with cancer and (ii) this human in vivo model for chemotherapy-induced hair loss is closer to clinical reality than to any earlier models. Undoubtedly, this model will serve as a valuable tool for analyses of the mechanisms that underlie this devastating side effect of anti-cancer therapy.


Assuntos
Alopecia/induzido quimicamente , Alopecia/patologia , Ciclofosfamida/efeitos adversos , Folículo Piloso/efeitos dos fármacos , Animais , Humanos
16.
J Cell Biol ; 212(1): 77-89, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26711500

RESUMO

During development, multipotent progenitor cells establish lineage-specific programmers of gene activation and silencing underlying their differentiation into specialized cell types. We show that the Polycomb component Cbx4 serves as a critical determinant that maintains the epithelial identity in the developing epidermis by repressing nonepidermal gene expression programs. Cbx4 ablation in mice results in a marked decrease of the epidermal thickness and keratinocyte (KC) proliferation associated with activation of numerous neuronal genes and genes encoding cyclin-dependent kinase inhibitors (p16/p19 and p57). Furthermore, the chromodomain- and SUMO E3 ligase-dependent Cbx4 activities differentially regulate proliferation, differentiation, and expression of nonepidermal genes in KCs. Finally, Cbx4 expression in KCs is directly regulated by p63 transcription factor, whereas Cbx4 overexpression is capable of partially rescuing the effects of p63 ablation on epidermal development. These data demonstrate that Cbx4 plays a crucial role in the p63-regulated program of epidermal differentiation, maintaining the epithelial identity and proliferative activity in KCs via repression of the selected nonepidermal lineage and cell cycle inhibitor genes.


Assuntos
Linhagem da Célula , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Epitélio/crescimento & desenvolvimento , Ligases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexo Repressor Polycomb 1/deficiência , Complexo Repressor Polycomb 1/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
17.
Adv Wound Care (New Rochelle) ; 3(7): 468-475, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25032066

RESUMO

Significance: Epigenetic regulatory mechanisms are essential for epidermal homeostasis and contribute to the pathogenesis of many skin diseases, including skin cancer and psoriasis. However, while the epigenetic regulation of epidermal homeostasis is now becoming active area of research, the epigenetic mechanisms controlling the wound healing response remain relatively untouched. Recent Advances: Substantial progress achieved within the last two decades in understanding epigenetic mechanisms controlling gene expression allowed defining several levels, including covalent DNA and histone modifications, ATP-dependent and higher-order chromatin chromatin remodeling, as well as noncoding RNA- and microRNA-dependent regulation. Research pertained over the last few years suggests that epigenetic regulatory mechanisms play a pivotal role in the regulation of skin regeneration and control an execution of reparative gene expression programs in both skin epithelium and mesenchyme. Critical Issues: Epigenetic regulators appear to be inherently involved in the processes of skin repair, and are able to dynamically regulate keratinocyte proliferation, differentiation, and migration, together with influencing dermal regeneration and neoangiogenesis. This is achieved through a series of complex regulatory mechanisms that are able to both stimulate and repress gene activation to transiently alter cellular phenotype and behavior, and interact with growth factor activity. Future Directions: Understanding the molecular basis of epigenetic regulation is a priority as it represents potential therapeutic targets for the treatment of both acute and chronic skin conditions. Future research is, therefore, imperative to help distinguish epigenetic modulating drugs that can be used to improve wound healing.

18.
J Cell Biol ; 207(4): 549-67, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25422376

RESUMO

Skin development is governed by complex programs of gene activation and silencing, including microRNA-dependent modulation of gene expression. Here, we show that miR-214 regulates skin morphogenesis and hair follicle (HF) cycling by targeting ß-catenin, a key component of the Wnt signaling pathway. miR-214 exhibits differential expression patterns in the skin epithelium, and its inducible overexpression in keratinocytes inhibited proliferation, which resulted in formation of fewer HFs with decreased hair bulb size and thinner hair production. The inhibitory effects of miR-214 on HF development and cycling were associated with altered activities of multiple signaling pathways, including decreased expression of key Wnt signaling mediators ß-catenin and Lef-1, and were rescued by treatment with pharmacological Wnt activators. Finally, we identify ß-catenin as one of the conserved miR-214 targets in keratinocytes. These data provide an important foundation for further analyses of miR-214 as a key regulator of Wnt pathway activity and stem cell functions during normal tissue homeostasis, regeneration, and aging.


Assuntos
Folículo Piloso/crescimento & desenvolvimento , Fator 1 de Ligação ao Facilitador Linfoide/genética , MicroRNAs/fisiologia , Via de Sinalização Wnt , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Senescência Celular/genética , Genótipo , Folículo Piloso/metabolismo , Queratina-10/biossíntese , Queratina-14/biossíntese , Queratinócitos/citologia , Fator 1 de Ligação ao Facilitador Linfoide/biossíntese , Proteínas de Membrana/biossíntese , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Regeneração/genética , Pele/crescimento & desenvolvimento , Pele/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/biossíntese , beta Catenina/genética
19.
J Invest Dermatol ; 134(3): 827-837, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24126843

RESUMO

Bone morphogenetic protein (BMP) signaling plays a key role in the control of skin development and postnatal remodeling by regulating keratinocyte proliferation, differentiation, and apoptosis. To study the role of BMPs in wound-induced epidermal repair, we used transgenic mice overexpressing the BMP downstream component Smad1 under the control of a K14 promoter as an in vivo model, as well as ex vivo and in vitro assays. K14-caSmad1 (transgenic mice overexpressing a constitutively active form of Smad1 under K14 promoter) mice exhibited retarded wound healing associated with significant inhibition of proliferation and increased apoptosis in healing wound epithelium. Furthermore, microarray and quantitative real-time reverse-transcriptase-PCR (qRT-PCR) analyses revealed decreased expression of a number of cytoskeletal/cell motility-associated genes including wound-associated keratins (Krt16, Krt17) and Myosin VA (Myo5a), in the epidermis of K14-caSmad1 mice versus wild-type (WT) controls during wound healing. BMP treatment significantly inhibited keratinocyte migration ex vivo, and primary keratinocytes of K14-caSmad1 mice showed retarded migration compared with WT controls. Finally, small interfering RNA (siRNA)-mediated silencing of BMPR-1B in primary mouse keratinocytes accelerated cell migration and was associated with increased expression of Krt16, Krt17, and Myo5a compared with controls. Thus, this study demonstrates that BMPs inhibit keratinocyte proliferation, cytoskeletal organization, and migration in regenerating skin epithelium during wound healing, and raises a possibility for using BMP antagonists for the management of chronic wounds.


Assuntos
Apoptose/fisiologia , Proteínas Morfogenéticas Ósseas/metabolismo , Epiderme/fisiologia , Queratinócitos/fisiologia , Transdução de Sinais/fisiologia , Cicatrização/fisiologia , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Movimento Celular/fisiologia , Proliferação de Células , Células Cultivadas , Células Epidérmicas , Humanos , Queratina-14/genética , Queratinócitos/citologia , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , RNA Interferente Pequeno/genética , Proteína Smad1/genética , Proteína Smad1/metabolismo
20.
J Invest Dermatol ; 134(12): 2873-2882, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24999588

RESUMO

Chemotherapy has severe side effects in normal rapidly proliferating organs, such as hair follicles, and causes massive apoptosis in hair matrix keratinocytes followed by hair loss. To define the molecular signature of hair follicle response to chemotherapy, human scalp hair follicles cultured ex vivo were treated with doxorubicin (DXR), and global microarray analysis was performed 3 hours after treatment. Microarray data revealed changes in expression of 504 genes in DXR-treated hair follicles versus controls. Among these genes, upregulations of several tumor necrosis factor family of apoptotic receptors (FAS, TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) receptors 1/2), as well as of a large number of keratin-associated protein genes, were seen after DXR treatment. Hair follicle apoptosis induced by DXR was significantly inhibited by either TRAIL-neutralizing antibody or caspase-8 inhibitor, thus suggesting a previously unreported role for TRAIL receptor signaling in mediating DXR-induced hair loss. These data demonstrate that the early phase of the hair follicle response to DXR includes upregulation of apoptosis-associated markers, as well as substantial reorganization of the terminal differentiation programs in hair follicle keratinocytes. These data provide an important platform for further studies toward the design of effective approaches for the management of chemotherapy-induced hair loss.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Folículo Piloso/citologia , Alopecia/induzido quimicamente , Alopecia/metabolismo , Alopecia/patologia , Antineoplásicos/efeitos adversos , Caspase 8/efeitos dos fármacos , Caspase 8/metabolismo , Células Cultivadas , Dano ao DNA/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Folículo Piloso/metabolismo , Folículo Piloso/patologia , Humanos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/efeitos dos fármacos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor fas/efeitos dos fármacos , Receptor fas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA