Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cereb Cortex ; 34(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39004756

RESUMO

In the human brain, a multiple-demand (MD) network plays a key role in cognitive control, with core components in lateral frontal, dorsomedial frontal and lateral parietal cortex, and multivariate activity patterns that discriminate the contents of many cognitive activities. In prefrontal cortex of the behaving monkey, different cognitive operations are associated with very different patterns of neural activity, while details of a particular stimulus are encoded as small variations on these basic patterns (Sigala et al, 2008). Here, using the advanced fMRI methods of the Human Connectome Project and their 360-region cortical parcellation, we searched for a similar result in MD activation patterns. In each parcel, we compared multivertex patterns for every combination of three tasks (working memory, task-switching, and stop-signal) and two stimulus classes (faces and buildings). Though both task and stimulus category were discriminated in every cortical parcel, the strength of discrimination varied strongly across parcels. The different cognitive operations of the three tasks were strongly discriminated in MD regions. Stimulus categories, in contrast, were most strongly discriminated in a large region of primary and higher visual cortex, and intriguingly, in both parietal and frontal lobe regions adjacent to core MD regions. In the monkey, frontal neurons show a strong pattern of nonlinear mixed selectivity, with activity reflecting specific conjunctions of task events. In our data, however, there was limited evidence for mixed selectivity; throughout the brain, discriminations of task and stimulus combined largely linearly, with a small nonlinear component. In MD regions, human fMRI data recapitulate some but not all aspects of electrophysiological data from nonhuman primates.


Assuntos
Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Humanos , Masculino , Adulto , Feminino , Memória de Curto Prazo/fisiologia , Adulto Jovem , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Estimulação Luminosa/métodos , Mapeamento Encefálico/métodos , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Cognição/fisiologia
2.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38244562

RESUMO

Theoretical models suggest that executive functions rely on both domain-general and domain-specific processes. Supporting this view, prior brain imaging studies have revealed that executive activations converge and diverge within broadly characterized brain networks. However, the lack of precise anatomical mappings has impeded our understanding of the interplay between domain-general and domain-specific processes. To address this challenge, we used the high-resolution multimodal magnetic resonance imaging approach of the Human Connectome Project to scan participants performing 3 canonical executive tasks: n-back, rule switching, and stop signal. The results reveal that, at the individual level, different executive activations converge within 9 domain-general territories distributed in frontal, parietal, and temporal cortices. Each task exhibits a unique topography characterized by finely detailed activation gradients within domain-general territory shifted toward adjacent resting-state networks; n-back activations shift toward the default mode, rule switching toward dorsal attention, and stop signal toward cingulo-opercular networks. Importantly, the strongest activations arise at multimodal neurobiological definitions of network borders. Matching results are seen in circumscribed regions of the caudate nucleus, thalamus, and cerebellum. The shifting peaks of local gradients at the intersection of task-specific networks provide a novel mechanistic insight into how partially-specialized networks interact with neighboring domain-general territories to generate distinct executive functions.


Assuntos
Conectoma , Função Executiva , Humanos , Função Executiva/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Núcleo Caudado , Atenção/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia
3.
Cereb Cortex ; 32(12): 2521-2537, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34628494

RESUMO

Recent functional MRI studies identified sensory-biased regions across much of the association cortices and cerebellum. However, their anatomical relationship to multiple-demand (MD) regions, characterized as domain-general due to their coactivation during multiple cognitive demands, remains unclear. For a better anatomical delineation, we used multimodal MRI techniques of the Human Connectome Project to scan subjects performing visual and auditory versions of a working memory (WM) task. The contrast between hard and easy WM showed strong domain generality, with essentially identical patterns of cortical, subcortical, and cerebellar MD activity for visual and auditory materials. In contrast, modality preferences were shown by contrasting easy WM with baseline; most MD regions showed visual preference while immediately adjacent to cortical MD regions, there were interleaved regions of both visual and auditory preference. The results may exemplify a general motif whereby domain-specific regions feed information into and out of an adjacent, integrative MD core.


Assuntos
Conectoma , Percepção Visual , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Memória de Curto Prazo/fisiologia , Percepção Visual/fisiologia
4.
J Cogn Neurosci ; 32(7): 1348-1368, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32108555

RESUMO

The frontoparietal "multiple-demand" (MD) control network plays a key role in goal-directed behavior. Recent developments of multivoxel pattern analysis (MVPA) for fMRI data allow for more fine-grained investigations into the functionality and properties of brain systems. In particular, MVPA in the MD network was used to gain better understanding of control processes such as attentional effects, adaptive coding, and representation of multiple task-relevant features, but overall low decoding levels have limited its use for this network. A common practice of applying MVPA is by investigating pattern discriminability within a ROI using a template mask, thus ensuring that the same brain areas are studied in all participants. This approach offers high sensitivity but does not take into account differences between individuals in the spatial organization of brain regions. An alternative approach uses independent localizer data for each subject to select the most responsive voxels and define individual ROIs within the boundaries of a group template. Such an approach allows for a refined and targeted localization based on the unique pattern of activity of individual subjects while ensuring that functionally similar brain regions are studied for all subjects. In the current study, we tested whether using individual ROIs leads to changes in decodability of task-related neural representations as well as univariate activity across the MD network compared with when using a group template. We used three localizer tasks to separately define subject-specific ROIs: spatial working memory, verbal working memory, and a Stroop task. We then systematically assessed univariate and multivariate results in a separate rule-based criterion task. All the localizer tasks robustly recruited the MD network and evoked highly reliable activity patterns in individual subjects. Consistent with previous studies, we found a clear benefit of the subject-specific ROIs for univariate results from the criterion task, with increased activity in the individual ROIs based on the localizers' data, compared with the activity observed when using the group template. In contrast, there was no benefit of the subject-specific ROIs for the multivariate results in the form of increased discriminability, as well as no cost of reduced discriminability. Both univariate and multivariate results were similar in the subject-specific ROIs defined by each of the three localizers. Our results provide important empirical evidence for researchers in the field of cognitive control for the use of individual ROIs in the frontoparietal network for both univariate and multivariate analysis of fMRI data and serve as another step toward standardization and increased comparability across studies.


Assuntos
Mapeamento Encefálico , Encéfalo , Atenção , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Memória de Curto Prazo
5.
J Cogn Neurosci ; 31(11): 1617-1630, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31274390

RESUMO

A distributed, frontoparietal "multiple-demand" (MD) network is involved in tasks of many different kinds. Integrated activity across this network may be needed to bind together the multiple features of a mental control program (Duncan, 2013). Previous data suggest that, especially with low cognitive load, there may be some differentiation between MD regions (e.g., anterior vs. posterior regions of lateral frontal cortex), but with increasing load, there is progressive recruitment of the entire network. Differentiation may reflect preferential access to different task features, whereas co-recruitment may reflect information exchange and integration. To examine these patterns, we used manipulations of complexity, time pressure, and reward while participants solved a spatial maze. Complexity was manipulated by combining two simple tasks. Time pressure was added by fading away the maze during route planning, and on some of these trials, there was the further possibility of a substantial reward. Simple tasks evoked activity only in posterior MD regions, including posterior lateral frontal cortex, pre-supplementary motor area/anterior cingulate, and intraparietal sulcus. With increasing complexity, time pressure, and reward, increases in activity were broadly distributed across the MD network, though with quantitative variations. Across the MD network, the results show a degree of functional differentiation, especially at low load, but strong co-recruitment with increased challenge or incentive.


Assuntos
Lobo Frontal/fisiologia , Lobo Parietal/fisiologia , Desempenho Psicomotor/fisiologia , Adolescente , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Tempo de Reação , Recompensa , Processamento Espacial , Fatores de Tempo , Adulto Jovem
6.
J Interpers Violence ; 39(1-2): 11-34, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37599434

RESUMO

Domestic violence, especially intimate partner violence (IPV), is an important issue worldwide, especially in India. Those that experience it may not always be able to come forward or have access to the required social support to act against it. We use National Family Health Survey data (n = 66,013 women) to create machine learning models which can predict IPV instances with a recall of 78%. We use the top 15 best predicting questions that avoid sensitive issues to create a field tool that frontline health workers can use to identify women with a high risk of IPV and provide the support they need.


Assuntos
Violência Doméstica , Violência por Parceiro Íntimo , Humanos , Feminino , Apoio Social , Índia , Pessoal de Saúde , Fatores de Risco
7.
Neuropsychologia ; 160: 107981, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34332993

RESUMO

Selection and integration of information based on current goals is fundamental for goal-directed behavior. Reward motivation has been shown to improve behavioral performance, yet the neural mechanisms that link motivation and control processes, and in particular its effect on context-dependent information processing, remain unclear. We used functional magnetic resonance imaging (fMRI) in 24 human volunteers (13 females) to test whether reward motivation enhances the coding of task-relevant information across the frontoparietal cortex, as would be predicted based on previous experimental evidence and theoretical accounts. In a cued target detection task, participants detected whether an object from a cued visual category was present in a subsequent display. The combination of the cue and the object visual category determined the behavioral status of the objects. To manipulate reward motivation, half of all trials offered the possibility of a monetary reward. We observed an increase with reward in overall univariate activity across the frontoparietal control network when the cue and subsequent object were presented. Multivariate pattern analysis (MVPA) showed that behavioral status information for the objects was conveyed across the network. However, in contrast to our prediction, reward did not increase the discrimination between behavioral status conditions in the stimulus epoch of a trial when object information was processed depending on a current context. In the high-level general-object visual region, the lateral occipital complex, the representation of behavioral status was driven by visual differences and was not modulated by reward. Our study provides useful evidence for the limited effects of reward motivation on task-related neural representations and highlights the necessity to unravel the diverse forms and extent of these effects.


Assuntos
Motivação , Lobo Parietal , Mapeamento Encefálico , Sinais (Psicologia) , Feminino , Lobo Frontal/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Lobo Parietal/diagnóstico por imagem , Recompensa
8.
Trends Cogn Sci ; 24(10): 838-852, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32771330

RESUMO

How does organized cognition arise from distributed brain activity? Recent analyses of fluid intelligence suggest a core process of cognitive focus and integration, organizing the components of a cognitive operation into the required computational structure. A cortical 'multiple-demand' (MD) system is closely linked to fluid intelligence, and recent imaging data define nine specific MD patches distributed across frontal, parietal, and occipitotemporal cortex. Wide cortical distribution, relative functional specialization, and strong connectivity suggest a basis for cognitive integration, matching electrophysiological evidence for binding of cognitive operations to their contents. Though still only in broad outline, these data suggest how distributed brain activity can build complex, organized cognition.


Assuntos
Mapeamento Encefálico , Inteligência , Encéfalo , Cognição , Humanos , Imageamento por Ressonância Magnética
9.
Front Aging Neurosci ; 12: 576922, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33328959

RESUMO

A decline in declarative or explicit memory has been extensively characterized in cognitive aging and is a hallmark of cognitive impairments. However, whether and how implicit perceptual memory varies with aging or cognitive impairment is unclear. Here, we compared implicit perceptual memory and explicit memory measures in three groups of participants: (1) 59 healthy young volunteers (20-30 years); (2) 269 healthy old volunteers (50-90 years) and (3) 21 patients with mild cognitive impairment, i.e., MCI (50-90 years). To measure explicit memory, participants were tested on standard recognition and recall tasks. To measure implicit perceptual memory, we used a classic perceptual priming paradigm. Participants had to report the shape of a visual search pop-out target whose color or position was varied randomly across trials. Perceptual priming was measured as the speedup in response time for targets that repeated in color or position. Our main findings are as follows: (1) Explicit memory was weaker in old compared to young participants, and in MCI patients compared to age- and education-matched controls; (2) Surprisingly, perceptual priming did not always decline with age: color priming was smaller in older participants but position priming was larger; (3) Position priming was less frequent in the MCI group compared to matched controls; (4) Perceptual priming and explicit memory were uncorrelated across participants. Thus, perceptual priming can increase or decrease with age or cognitive impairment, but these changes do not covary with explicit memory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA