Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Med Internet Res ; 25: e45614, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37351927

RESUMO

BACKGROUND: Recent attempts at clinical phenotyping for sepsis have shown promise in identifying groups of patients with distinct treatment responses. Nonetheless, the replicability and actionability of these phenotypes remain an issue because the patient trajectory is a function of both the patient's physiological state and the interventions they receive. OBJECTIVE: We aimed to develop a novel approach for deriving clinical phenotypes using unsupervised learning and transition modeling. METHODS: Forty commonly used clinical variables from the electronic health record were used as inputs to a feed-forward neural network trained to predict the onset of sepsis. Using spectral clustering on the representations from this network, we derived and validated consistent phenotypes across a diverse cohort of patients with sepsis. We modeled phenotype dynamics as a Markov decision process with transitions as a function of the patient's current state and the interventions they received. RESULTS: Four consistent and distinct phenotypes were derived from over 11,500 adult patients who were admitted from the University of California, San Diego emergency department (ED) with sepsis between January 1, 2016, and January 31, 2020. Over 2000 adult patients admitted from the University of California, Irvine ED with sepsis between November 4, 2017, and August 4, 2022, were involved in the external validation. We demonstrate that sepsis phenotypes are not static and evolve in response to physiological factors and based on interventions. We show that roughly 45% of patients change phenotype membership within the first 6 hours of ED arrival. We observed consistent trends in patient dynamics as a function of interventions including early administration of antibiotics. CONCLUSIONS: We derived and describe 4 sepsis phenotypes present within 6 hours of triage in the ED. We observe that the administration of a 30 mL/kg fluid bolus may be associated with worse outcomes in certain phenotypes, whereas prompt antimicrobial therapy is associated with improved outcomes.


Assuntos
Sepse , Humanos , Estudos Retrospectivos , Sepse/diagnóstico , Sepse/terapia , Estudos de Coortes , Serviço Hospitalar de Emergência , Fenótipo , Análise por Conglomerados
2.
J Med Internet Res ; 25: e43486, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36780203

RESUMO

BACKGROUND: Sepsis costs and incidence vary dramatically across diagnostic categories, warranting a customized approach for implementing predictive models. OBJECTIVE: The aim of this study was to optimize the parameters of a sepsis prediction model within distinct patient groups to minimize the excess cost of sepsis care and analyze the potential effect of factors contributing to end-user response to sepsis alerts on overall model utility. METHODS: We calculated the excess costs of sepsis to the Centers for Medicare and Medicaid Services (CMS) by comparing patients with and without a secondary sepsis diagnosis but with the same primary diagnosis and baseline comorbidities. We optimized the parameters of a sepsis prediction algorithm across different diagnostic categories to minimize these excess costs. At the optima, we evaluated diagnostic odds ratios and analyzed the impact of compliance factors such as noncompliance, treatment efficacy, and tolerance for false alarms on the net benefit of triggering sepsis alerts. RESULTS: Compliance factors significantly contributed to the net benefit of triggering a sepsis alert. However, a customized deployment policy can achieve a significantly higher diagnostic odds ratio and reduced costs of sepsis care. Implementing our optimization routine with powerful predictive models could result in US $4.6 billion in excess cost savings for CMS. CONCLUSIONS: We designed a framework for customizing sepsis alert protocols within different diagnostic categories to minimize excess costs and analyzed model performance as a function of false alarm tolerance and compliance with model recommendations. We provide a framework that CMS policymakers could use to recommend minimum adherence rates to the early recognition and appropriate care of sepsis that is sensitive to hospital department-level incidence rates and national excess costs. Customizing the implementation of clinical predictive models by accounting for various behavioral and economic factors may improve the practical benefit of predictive models.


Assuntos
Medicare , Sepse , Idoso , Humanos , Estados Unidos , Sepse/diagnóstico , Sepse/terapia , Algoritmos , Resultado do Tratamento
3.
Crit Care Med ; 49(12): e1196-e1205, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34259450

RESUMO

OBJECTIVES: To train a model to predict vasopressor use in ICU patients with sepsis and optimize external performance across hospital systems using domain adaptation, a transfer learning approach. DESIGN: Observational cohort study. SETTING: Two academic medical centers from January 2014 to June 2017. PATIENTS: Data were analyzed from 14,512 patients (9,423 at the development site and 5,089 at the validation site) who were admitted to an ICU and met Center for Medicare and Medicaid Services definition of severe sepsis either before or during the ICU stay. Patients were excluded if they never developed sepsis, if the ICU length of stay was less than 8 hours or more than 20 days or if they developed shock up to the first 4 hours of ICU admission. MEASUREMENTS AND MAIN RESULTS: Forty retrospectively collected features from the electronic medical records of adult ICU patients at the development site (four hospitals) were used as inputs for a neural network Weibull-Cox survival model to derive a prediction tool for future need of vasopressors. Domain adaptation updated parameters to optimize model performance in the validation site (two hospitals), a different healthcare system over 2,000 miles away. The cohorts at both sites were randomly split into training and testing sets (80% and 20%, respectively). When applied to the test set in the development site, the model predicted vasopressor use 4-24 hours in advance with an area under the receiver operator characteristic curve, specificity, and positive predictive value ranging from 0.80 to 0.81, 56.2% to 61.8%, and 5.6% to 12.1%, respectively. Domain adaptation improved performance of the model to predict vasopressor use within 4 hours at the validation site (area under the receiver operator characteristic curve 0.81 [CI, 0.80-0.81] from 0.77 [CI, 0.76-0.77], p < 0.01; specificity 59.7% [CI, 58.9-62.5%] from 49.9% [CI, 49.5-50.7%], p < 0.01; positive predictive value 8.9% [CI, 8.5-9.4%] from 7.3 [7.1-7.4%], p < 0.01). CONCLUSIONS: Domain adaptation improved performance of a model predicting sepsis-associated vasopressor use during external validation.


Assuntos
Aceitação pelo Paciente de Cuidados de Saúde/estatística & dados numéricos , Sepse/tratamento farmacológico , Vasoconstritores/administração & dosagem , Estudos de Coortes , Ciência de Dados/métodos , Humanos , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Design de Software , Vasoconstritores/uso terapêutico
4.
Ann Emerg Med ; 77(4): 395-406, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33455840

RESUMO

STUDY OBJECTIVE: Machine-learning algorithms allow improved prediction of sepsis syndromes in the emergency department (ED), using data from electronic medical records. Transfer learning, a new subfield of machine learning, allows generalizability of an algorithm across clinical sites. We aim to validate the Artificial Intelligence Sepsis Expert for the prediction of delayed septic shock in a cohort of patients treated in the ED and demonstrate the feasibility of transfer learning to improve external validity at a second site. METHODS: This was an observational cohort study using data from greater than 180,000 patients from 2 academic medical centers between 2014 and 2019, using multiple definitions of sepsis. The Artificial Intelligence Sepsis Expert algorithm was trained with 40 input variables at the development site to predict delayed septic shock (occurring greater than 4 hours after ED triage) at various prediction windows. We then validated the algorithm at a second site, using transfer learning to demonstrate generalizability of the algorithm. RESULTS: We identified 9,354 patients with severe sepsis, of whom 723 developed septic shock at least 4 hours after triage. The Artificial Intelligence Sepsis Expert algorithm demonstrated excellent area under the receiver operating characteristic curve (>0.8) at 8 and 12 hours for the prediction of delayed septic shock. Transfer learning significantly improved the test characteristics of the Artificial Intelligence Sepsis Expert algorithm and yielded comparable performance at the validation site. CONCLUSION: The Artificial Intelligence Sepsis Expert algorithm accurately predicted the development of delayed septic shock. The use of transfer learning allowed significantly improved external validity and generalizability at a second site. Future prospective studies are indicated to evaluate the clinical utility of this model.


Assuntos
Inteligência Artificial , Serviço Hospitalar de Emergência , Choque Séptico/diagnóstico , Idoso , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco
5.
Crit Care Med ; 48(2): 210-217, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31939789

RESUMO

OBJECTIVES: Sepsis is a major public health concern with significant morbidity, mortality, and healthcare expenses. Early detection and antibiotic treatment of sepsis improve outcomes. However, although professional critical care societies have proposed new clinical criteria that aid sepsis recognition, the fundamental need for early detection and treatment remains unmet. In response, researchers have proposed algorithms for early sepsis detection, but directly comparing such methods has not been possible because of different patient cohorts, clinical variables and sepsis criteria, prediction tasks, evaluation metrics, and other differences. To address these issues, the PhysioNet/Computing in Cardiology Challenge 2019 facilitated the development of automated, open-source algorithms for the early detection of sepsis from clinical data. DESIGN: Participants submitted containerized algorithms to a cloud-based testing environment, where we graded entries for their binary classification performance using a novel clinical utility-based evaluation metric. We designed this scoring function specifically for the Challenge to reward algorithms for early predictions and penalize them for late or missed predictions and for false alarms. SETTING: ICUs in three separate hospital systems. We shared data from two systems publicly and sequestered data from all three systems for scoring. PATIENTS: We sourced over 60,000 ICU patients with up to 40 clinical variables for each hour of a patient's ICU stay. We applied Sepsis-3 clinical criteria for sepsis onset. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: A total of 104 groups from academia and industry participated, contributing 853 submissions. Furthermore, 90 abstracts based on Challenge entries were accepted for presentation at Computing in Cardiology. CONCLUSIONS: Diverse computational approaches predict the onset of sepsis several hours before clinical recognition, but generalizability to different hospital systems remains a challenge.


Assuntos
Algoritmos , Diagnóstico Precoce , Unidades de Terapia Intensiva , Sepse/diagnóstico , Registros Eletrônicos de Saúde , Feminino , Humanos , Masculino , Sepse/fisiopatologia , Índice de Gravidade de Doença , Fatores de Tempo , Estados Unidos
6.
J Electrocardiol ; 50(6): 739-743, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28916175

RESUMO

Sepsis remains a leading cause of morbidity and mortality among intensive care unit (ICU) patients. For each hour treatment initiation is delayed after diagnosis, sepsis-related mortality increases by approximately 8%. Therefore, maximizing effective care requires early recognition and initiation of treatment protocols. Antecedent signs and symptoms of sepsis can be subtle and unrecognizable (e.g., loss of autonomic regulation of vital signs), causing treatment delays and harm to the patient. In this work we investigated the utility of high-resolution blood pressure (BP) and heart rate (HR) times series dynamics for the early prediction of sepsis in patients from an urban, academic hospital, meeting the third international consensus definition of sepsis (sepsis-III) during their ICU admission. Using a multivariate modeling approach we found that HR and BP dynamics at multiple time-scales are independent predictors of sepsis, even after adjusting for commonly measured clinical values and patient demographics and comorbidities. Earlier recognition and diagnosis of sepsis has the potential to decrease sepsis-related morbidity and mortality through earlier initiation of treatment protocols.


Assuntos
Determinação da Pressão Arterial , Cuidados Críticos , Estado Terminal , Frequência Cardíaca/fisiologia , Sepse/diagnóstico , Sepse/fisiopatologia , Idoso , Algoritmos , Diagnóstico Precoce , Eletrocardiografia , Feminino , Mortalidade Hospitalar , Humanos , Unidades de Terapia Intensiva , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Sepse/mortalidade , Software
7.
Artigo em Inglês | MEDLINE | ID: mdl-39301656

RESUMO

OBJECTIVE: Unplanned readmissions following a hospitalization remain common despite significant efforts to curtail these. Wearable devices may offer help identify patients at high risk for an unplanned readmission. MATERIALS AND METHODS: We conducted a multi-center retrospective cohort study using data from the All of Us data repository. We included subjects with wearable data and developed a baseline Feedforward Neural Network (FNN) model and a Long Short-Term Memory (LSTM) time-series deep learning model to predict daily, unplanned rehospitalizations up to 90 days from discharge. In addition to demographic and laboratory data from subjects, post-discharge data input features include wearable data and multiscale entropy features based on intraday wearable time series. The most significant features in the LSTM model were determined by permutation feature importance testing. RESULTS: In sum, 612 patients met inclusion criteria. The complete LSTM model had a higher area under the receiver operating characteristic curve than the FNN model (0.83 vs 0.795). The 5 most important input features included variables from multiscale entropy (steps) and number of active steps per day. DISCUSSION: Data available from wearable devices can improve ability to predict readmissions. Prior work has focused on predictors available up to discharge or on additional data abstracted from wearable devices. Our results from 35 institutions highlight how multiscale entropy can improve readmission prediction and may impact future work in this domain. CONCLUSION: Wearable data and multiscale entropy can improve prediction of a deep-learning model to predict unplanned 90-day readmissions. Prospective studies are needed to validate these findings.

8.
JAMIA Open ; 7(3): ooae085, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39314673

RESUMO

Objective: To investigate the impact of missing laboratory measurements on sepsis diagnostic delays. Materials and Methods: In adult patients admitted to 2 University of California San Diego (UCSD) hospitals from January 1, 2021 to June 30, 2024, we evaluated the relative time of organ failure (T OF) and time of clinical suspicion of sepsis (T suspicion) in patients with sepsis according to the Centers for Medicare & Medicaid Services (CMS) definition. Results: Of the patients studied, 48.7% (n = 2017) in the emergency department (ED), 30.8% (n = 209) in the wards, and 14.4% (n = 167) in the intensive care unit (ICU) had T OF after T suspicion. Patients with T OF after T suspicion had significantly higher data missingness of 1 or more of the 5 laboratory components used to determine organ failure. The mean number of missing labs was 4.23 vs 2.83 in the ED, 4.04 vs 3.38 in the wards, and 3.98 vs 3.19 in the ICU. Discussion: Our study identified many sepsis patients with missing laboratory results vital for the identification of organ failure and the diagnosis of sepsis at or before the time of clinical suspicion of sepsis. Addressing data missingness via more timely laboratory assessment could precipitate an earlier recognition of organ failure and potentially earlier diagnosis of and treatment initiation for sepsis. Conclusions: More prompt laboratory assessment might improve the timeliness of sepsis recognition and treatment.

9.
JAMIA Open ; 7(3): ooae097, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39318762

RESUMO

Objectives: Serum creatinine (SCr) is the primary biomarker for assessing kidney function; however, it may lag behind true kidney function, especially in instances of acute kidney injury (AKI). The objective of the work is to develop Nephrocast, a deep-learning model to predict next-day SCr in adult patients treated in the intensive care unit (ICU). Materials and Methods: Nephrocast was trained and validated, temporally and prospectively, using electronic health record data of adult patients admitted to the ICU in the University of California San Diego Health (UCSDH) between January 1, 2016 and June 22, 2024. The model features consisted of demographics, comorbidities, vital signs and laboratory measurements, and medications. Model performance was evaluated by mean absolute error (MAE) and root-mean-square error (RMSE) and compared against the prediction day's SCr as a reference. Results: A total of 28 191 encounters met the eligibility criteria, corresponding to 105 718 patient-days. The median (interquartile range [IQR]) MAE and RMSE in the internal test set were 0.09 (0.085-0.09) mg/dL and 0.15 (0.146-0.152) mg/dL, respectively. In the prospective validation, the MAE and RMSE were 0.09 mg/dL and 0.14 mg/dL, respectively. The model's performance was superior to the reference SCr. Discussion and Conclusion: Our model demonstrated good performance in predicting next-day SCr by leveraging clinical data routinely collected in the ICU. The model could aid clinicians in in identifying high-risk patients for AKI, predicting AKI trajectory, and informing the dosing of renally eliminated drugs.

10.
AMIA Jt Summits Transl Sci Proc ; 2024: 258-265, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827075

RESUMO

Social Determinants of Health (SDoH) have been shown to have profound impacts on health-related outcomes, yet this data suffers from high rates of missingness in electronic health records (EHR). Moreover, limited English proficiency in the United States can be a barrier to communication with health care providers. In this study, we have designed a multilingual conversational agent capable of conducting SDoH surveys for use in healthcare environments. The agent asks questions in the patient's native language, translates responses into English, and subsequently maps these responses via a large language model (LLM) to structured options in a SDoH survey. This tool can be extended to a variety of survey instruments in either hospital or home settings, enabling the extraction of structured insights from free-text answers. The proposed approach heralds a shift towards more inclusive and insightful data collection, marking a significant stride in SDoH data enrichment for optimizing health outcome predictions and interventions.

11.
Crit Care Explor ; 6(9): e1151, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39258951

RESUMO

BACKGROUND: Prediction-based strategies for physiologic deterioration offer the potential for earlier clinical interventions that improve patient outcomes. Current strategies are limited because they operate on inconsistent definitions of deterioration, attempt to dichotomize a dynamic and progressive phenomenon, and offer poor performance. OBJECTIVE: Can a deep learning deterioration prediction model (Deep Learning Enhanced Triage and Emergency Response for Inpatient Optimization [DETERIO]) based on a consensus definition of deterioration (the Adult Inpatient Decompensation Event [AIDE] criteria) and that approaches deterioration as a state "value-estimation" problem outperform a commercially available deterioration score? DERIVATION COHORT: The derivation cohort contained retrospective patient data collected from both inpatient services (inpatient) and emergency departments (EDs) of two hospitals within the University of California San Diego Health System. There were 330,729 total patients; 71,735 were inpatient and 258,994 were ED. Of these data, 20% were randomly sampled as a retrospective "testing set." VALIDATION COHORT: The validation cohort contained temporal patient data. There were 65,898 total patients; 13,750 were inpatient and 52,148 were ED. PREDICTION MODEL: DETERIO was developed and validated on these data, using the AIDE criteria to generate a composite score. DETERIO's architecture builds upon previous work. DETERIO's prediction performance up to 12 hours before T0 was compared against Epic Deterioration Index (EDI). RESULTS: In the retrospective testing set, DETERIO's area under the receiver operating characteristic curve (AUC) was 0.797 and 0.874 for inpatient and ED subsets, respectively. In the temporal validation cohort, the corresponding AUC were 0.775 and 0.856, respectively. DETERIO outperformed EDI in the inpatient validation cohort (AUC, 0.775 vs. 0.721; p < 0.01) while maintaining superior sensitivity and a comparable rate of false alarms (sensitivity, 45.50% vs. 30.00%; positive predictive value, 20.50% vs. 16.11%). CONCLUSIONS: DETERIO demonstrates promise in the viability of a state value-estimation approach for predicting adult physiologic deterioration. It may outperform EDI while offering additional clinical utility in triage and clinician interaction with prediction confidence and explanations. Additional studies are needed to assess generalizability and real-world clinical impact.


Assuntos
Aprendizado Profundo , Serviço Hospitalar de Emergência , Humanos , Estudos Retrospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Deterioração Clínica , Triagem/métodos , Adulto , Estudos de Coortes , Pacientes Internados
12.
NPJ Digit Med ; 7(1): 14, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263386

RESUMO

Sepsis remains a major cause of mortality and morbidity worldwide. Algorithms that assist with the early recognition of sepsis may improve outcomes, but relatively few studies have examined their impact on real-world patient outcomes. Our objective was to assess the impact of a deep-learning model (COMPOSER) for the early prediction of sepsis on patient outcomes. We completed a before-and-after quasi-experimental study at two distinct Emergency Departments (EDs) within the UC San Diego Health System. We included 6217 adult septic patients from 1/1/2021 through 4/30/2023. The exposure tested was a nurse-facing Best Practice Advisory (BPA) triggered by COMPOSER. In-hospital mortality, sepsis bundle compliance, 72-h change in sequential organ failure assessment (SOFA) score following sepsis onset, ICU-free days, and the number of ICU encounters were evaluated in the pre-intervention period (705 days) and the post-intervention period (145 days). The causal impact analysis was performed using a Bayesian structural time-series approach with confounder adjustments to assess the significance of the exposure at the 95% confidence level. The deployment of COMPOSER was significantly associated with a 1.9% absolute reduction (17% relative decrease) in in-hospital sepsis mortality (95% CI, 0.3%-3.5%), a 5.0% absolute increase (10% relative increase) in sepsis bundle compliance (95% CI, 2.4%-8.0%), and a 4% (95% CI, 1.1%-7.1%) reduction in 72-h SOFA change after sepsis onset in causal inference analysis. This study suggests that the deployment of COMPOSER for early prediction of sepsis was associated with a significant reduction in mortality and a significant increase in sepsis bundle compliance.

13.
Crit Care Explor ; 6(6): e1099, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38787299

RESUMO

OBJECTIVES: To determine the predictive value of social determinants of health (SDoH) variables on 30-day readmission following a sepsis hospitalization as compared with traditional clinical variables. DESIGN: Multicenter retrospective cohort study using patient-level data, including demographic, clinical, and survey data. SETTINGS: Thirty-five hospitals across the United States from 2017 to 2021. PATIENTS: Two hundred seventy-one thousand four hundred twenty-eight individuals in the AllofUs initiative, of which 8909 had an index sepsis hospitalization. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Unplanned 30-day readmission to the hospital. Multinomial logistic regression models were constructed to account for survival in determination of variables associate with 30-day readmission and are presented as adjusted odds rations (aORs). Of the 8909 sepsis patients in our cohort, 21% had an unplanned hospital readmission within 30 days. Median age (interquartile range) was 54 years (41-65 yr), 4762 (53.4%) were female, and there were self-reported 1612 (18.09%) Black, 2271 (25.49%) Hispanic, and 4642 (52.1%) White individuals. In multinomial logistic regression models accounting for survival, we identified that change to nonphysician provider type due to economic reasons (aOR, 2.55 [2.35-2.74]), delay of receiving medical care due to lack of transportation (aOR, 1.68 [1.62-1.74]), and inability to afford flow-up care (aOR, 1.59 [1.52-1.66]) were strongly and independently associated with a 30-day readmission when adjusting for survival. Patients who lived in a ZIP code with a high percentage of patients in poverty and without health insurance were also more likely to be readmitted within 30 days (aOR, 1.26 [1.22-1.29] and aOR, 1.28 [1.26-1.29], respectively). Finally, we found that having a primary care provider and health insurance were associated with low odds of an unplanned 30-day readmission. CONCLUSIONS: In this multicenter retrospective cohort, several SDoH variables were strongly associated with unplanned 30-day readmission. Models predicting readmission following sepsis hospitalization may benefit from the addition of SDoH factors to traditional clinical variables.


Assuntos
Readmissão do Paciente , Sepse , Determinantes Sociais da Saúde , Humanos , Readmissão do Paciente/estatística & dados numéricos , Feminino , Masculino , Estudos Retrospectivos , Pessoa de Meia-Idade , Sepse/mortalidade , Sepse/terapia , Idoso , Adulto , Estados Unidos/epidemiologia , Modelos Logísticos , Fatores de Risco , Estudos de Coortes
14.
Artigo em Inglês | MEDLINE | ID: mdl-38083174

RESUMO

The wide adoption of predictive models into clinical practice require generalizability across hospitals and maintenance of consistent performance across time. Model calibration shift, caused by factors such as changes in prevalence rates or data distribution shift, can affect the generalizability of such models. In this work, we propose a model calibration detection and correction (CaDC) method, specifically designed to utilize only unlabeled data at a target hospital. The proposed method is very flexible and can be used alongside any deep learning-based clinical predictive model. As a case study, we focus on the problem of detecting and correcting model calibration shift in the context of early prediction of sepsis. Three patient cohorts consisting of 545,089 adult patients admitted to the emergency departments at three geographically diverse healthcare systems in the United States were used to train and externally validate the proposed method. We successfully show that utilizing the CaDC model can help assist the sepsis prediction model in achieving a predefined positive predictive value (PPV). For instance, when trained to achieve a PPV of 20%, the performance of the sepsis prediction model with and without the calibration shift estimation model was 18.0% vs 12.9% and 23.1% vs 13.4% at the two external validation cohorts, respectively. As such, the proposed CaDC method has potential applications in maintaining performance claims of predictive models deployed across hospital systems.Clinical relevance- Model generalizability is a requirement of wider adoption of clinical predictive models.


Assuntos
Hospitalização , Sepse , Adulto , Humanos , Estados Unidos , Calibragem , Serviço Hospitalar de Emergência , Sepse/diagnóstico
15.
Crit Care Clin ; 39(4): 751-768, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704338

RESUMO

Syndromic conditions, such as sepsis, are commonly encountered in the intensive care unit. Although these conditions are easy for clinicians to grasp, these conditions may limit the performance of machine-learning algorithms. Individual hospital practice patterns may limit external generalizability. Data missingness is another barrier to optimal algorithm performance and various strategies exist to mitigate this. Recent advances in data science, such as transfer learning, conformal prediction, and continual learning, may improve generalizability of machine-learning algorithms in critically ill patients. Randomized trials with these approaches are indicated to demonstrate improvements in patient-centered outcomes at this point.


Assuntos
Algoritmos , Sepse , Humanos , Unidades de Terapia Intensiva , Aprendizado de Máquina , Sepse/diagnóstico , Sepse/terapia
16.
Artigo em Inglês | MEDLINE | ID: mdl-38083765

RESUMO

The deployment of predictive analytic algorithms that can safely and seamlessly integrate into existing healthcare workflows remains a significant challenge. Here, we present a scalable, cloud-based, fault-tolerant platform that is capable of extracting and processing electronic health record (EHR) data for any patient at any time following admission and transferring results back into the EHR. This platform has been successfully deployed within the UC San Diego Health system and utilizes interoperable data standards to enable portability.Clinical relevance- This platform is currently hosting a deep learning model for the early prediction of sepsis that is operational in two emergency departments.


Assuntos
Algoritmos , Registros Eletrônicos de Saúde , Humanos , Atenção à Saúde , Hospitalização , Serviço Hospitalar de Emergência
17.
medRxiv ; 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37090509

RESUMO

The deployment of predictive analytic algorithms that can safely and seamlessly integrate into existing healthcare workflows remains a significant challenge. Here, we present a scalable, cloud-based, fault-tolerant platform that is capable of extracting and processing electronic health record (EHR) data for any patient at any time following admission and transferring results back into the EHR. This platform has been successfully deployed within the UC San Diego Health system and utilizes interoperable data standards to enable portability.

18.
medRxiv ; 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37090521

RESUMO

Sepsis is a life-threatening condition that occurs due to a dysregulated host response to infection. Recent data demonstrate that patients with sepsis have a significantly higher readmission risk than other common conditions, such as heart failure, pneumonia and myocardial infarction and associated economic burden. Prior studies have demonstrated an association between a patient's physical activity levels and readmission risk. In this study, we show that distribution of activity level prior and post-discharge among patients with sepsis are predictive of unplanned rehospitalization in 90 days (P-value<1e-3). Our preliminary results indicate that integrating Fitbit data with clinical measurements may improve model performance on predicting 90 days readmission.

19.
medRxiv ; 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37090626

RESUMO

Predictive models have been suggested as potential tools for identifying highest risk patients for hospital readmissions, in order to improve care coordination and ultimately long-term patient outcomes. However, the accuracy of current predictive models for readmission prediction is still moderate and further data enrichment is needed to identify at risk patients. This paper describes models to predict 90-day readmission, focusing on testing the predictive performance of wearable sensor features generated using multiscale entropy techniques and clinical features. Our study explores ways to incorporate pre-discharge and post-discharge wearable sensor features to make robust patient predictions. Data were used from participants enrolled in the AllofUs Research program. We extracted the inpatient cohort of patients and integrated clinical data from the electronic health records (EHR) and Fitbit sensor measurements. Entropy features were calculated from the longitudinal wearable sensor data, such as heart rate and mobility-related measurements, in order to characterize time series variability and complexity. Our best performing model acheived an AUC of 83%, and at 80% sensitivity acheived 75% specificity and 57% positive predictive value. Our results indicate that it would be possible to improve the ability to predict unplanned hospital readmissions by considering pre-discharge and post-discharge wearable features.

20.
medRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37808815

RESUMO

Social Determinants of Health (SDoH) have been shown to have profound impacts on health-related outcomes, yet this data suffers from high rates of missingness in electronic health records (EHR). Moreover, limited English proficiency in the United States can be a barrier to communication with health care providers. In this study, we have designed a multilingual conversational agent capable of conducting SDoH surveys for use in healthcare environments. The agent asks questions in the patient's native language, translates responses into English, and subsequently maps these responses via a large language model (LLM) to structured options in a SDoH survey. This tool can be extended to a variety of survey instruments in either hospital or home settings, enabling the extraction of structured insights from free-text answers. The proposed approach heralds a shift towards more inclusive and insightful data collection, marking a significant stride in SDoH data enrichment for optimizing health outcome predictions and interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA