Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(27): 16043-16054, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571919

RESUMO

In the indeterminate nodules of a model legume Medicago truncatula, ∼700 nodule-specific cysteine-rich (NCR) peptides with conserved cysteine signature are expressed. NCR peptides are highly diverse in sequence, and some of these cationic peptides exhibit antimicrobial activity in vitro and in vivo. However, there is a lack of knowledge regarding their structural architecture, antifungal activity, and modes of action against plant fungal pathogens. Here, the three-dimensional NMR structure of the 36-amino acid NCR044 peptide was solved. This unique structure was largely disordered and highly dynamic with one four-residue α-helix and one three-residue antiparallel ß-sheet stabilized by two disulfide bonds. NCR044 peptide also exhibited potent fungicidal activity against multiple plant fungal pathogens, including Botrytis cinerea and three Fusarium spp. It inhibited germination in quiescent spores of B. cinerea In germlings, it breached the fungal plasma membrane and induced reactive oxygen species. It bound to multiple bioactive phosphoinositides in vitro. Time-lapse confocal and superresolution microscopy revealed strong fungal cell wall binding, penetration of the cell membrane at discrete foci, followed by gradual loss of turgor, subsequent accumulation in the cytoplasm, and elevated levels in nucleoli of germlings. Spray-applied NCR044 significantly reduced gray mold disease symptoms caused by the fungal pathogen B. cinerea in tomato and tobacco plants, and postharvest products. Our work illustrates the antifungal activity of a structurally unique NCR peptide against plant fungal pathogens and paves the way for future development of this class of peptides as a spray-on fungistat/fungicide.


Assuntos
Antifúngicos/farmacologia , Peptídeos/metabolismo , Peptídeos/farmacologia , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacologia , Simbiose , Sequência de Aminoácidos , Botrytis/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Cisteína/química , Fusarium/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Espectroscopia de Ressonância Magnética , Medicago truncatula/microbiologia , Pichia/metabolismo , Doenças das Plantas/microbiologia , Nicotiana/metabolismo , Nicotiana/microbiologia
2.
Anal Chem ; 94(9): 3888-3896, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35188751

RESUMO

Tandem mass spectrometry of denatured, multiply charged high mass protein precursor ions yield extremely dense spectra with hundreds of broad and overlapping product ion isotopic distributions of differing charge states that yield an elevated baseline of unresolved "noise" centered about the precursor ion. Development of mass analyzers and signal processing methods to increase mass resolving power and manipulation of precursor and product ion charge through solution additives or ion-ion reactions have been thoroughly explored as solutions to spectral congestion. Here, we demonstrate the utility of electron capture dissociation (ECD) coupled with high-resolution cyclic ion mobility spectrometry (cIMS) to greatly increase top-down protein characterization capabilities. Congestion of protein ECD spectra was reduced using cIMS of the ECD product ions and "mobility fractions", that is, extracted mass spectra for segments of the 2D mobiligram (m/z versus drift time). For small proteins, such as ubiquitin (8.6 kDa), where mass resolving power was not the limiting factor for characterization, pre-IMS ECD and mobility fractions did not significantly increase protein sequence coverage, but an increase in the number of identified product ions was observed. However, a dramatic increase in performance, measured by protein sequence coverage, was observed for larger and more highly charged species, such as the +35 charge state of carbonic anhydrase (29 kDa). Pre-IMS ECD combined with mobility fractions yielded a 135% increase in the number of annotated isotope clusters and a 75% increase in unique product ions compared to processing without using the IMS dimension. These results yielded 89% sequence coverage for carbonic anhydrase.


Assuntos
Elétrons , Espectrometria de Mobilidade Iônica , Sequência de Aminoácidos , Proteínas/análise , Espectrometria de Massas em Tandem/métodos
3.
Nat Methods ; 15(7): 554, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29899368

RESUMO

In the version of this article initially published, the authors erroneously reported the search mode that was used for ProSightPC 3.0 in the Online Methods and in Supplementary Table 3.

4.
Anal Chem ; 92(2): 1788-1795, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31869201

RESUMO

The extent to which noncovalent protein complexes retain native structure in the gas phase is highly dependent on experimental conditions. Energetic collisions with background gas can cause structural changes ranging from unfolding to subunit dissociation. Additionally, recent studies have highlighted the role of charge in such structural changes, but the mechanism is not completely understood. In this study, native top down (native TD) mass spectrometry was used to probe gas-phase structural changes of alcohol dehydrogenase (ADH, 4mer) under varying degrees of in-source activation. Changes in covalent backbone fragments produced by electron capture dissociation (ECD) or 193 nm ultraviolet photodissociation (UVPD) were attributed to structural changes of the ADH 4mer. ECD fragments indicated unfolding started at the N-terminus, and the charge states of UVPD fragments enabled monitoring of charge migration to the unfolded regions. Interestingly, UVPD fragments also indicated that the charge at the "unfolding" N-terminus of ADH decreased at high in-source activation energies after the initial increase. We proposed a possible "refolding-after-unfolding" mechanism, as further supported by monitoring hydrogen elimination from radical a-ions produced by UVPD at the N-terminus of ADH. However, "refolding-after-unfolding" with increasing in-source activation was not observed for charge-reduced ADH, which likely adopted compact structures that are resistant to both charge migration and unfolding. When combined, these results support a charge-directed unfolding mechanism for protein complexes. Overall, an experimental framework was outlined for utilizing native TD to generate structure-informative mass spectral signatures for protein complexes that complement other structure characterization techniques, such as ion mobility and computational modeling.

5.
Anal Chem ; 92(1): 766-773, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31769659

RESUMO

One challenge associated with the discovery and development of monoclonal antibody (mAb) therapeutics is the determination of heavy chain and light chain pairing. Advances in MS instrumentation and MS/MS methods have greatly enhanced capabilities for the analysis of large intact proteins yielding much more detailed and accurate proteoform characterization. Consequently, direct interrogation of intact antibodies or F(ab')2 and Fab fragments has the potential to significantly streamline therapeutic mAb discovery processes. Here, we demonstrate for the first time the ability to efficiently cleave disulfide bonds linking heavy and light chains of mAbs using electron capture dissociation (ECD) and 157 nm ultraviolet photodissociation (UVPD). The combination of intact mAb, Fab, or F(ab')2 mass, intact LC and Fd masses, and CDR3 sequence coverage enabled determination of heavy chain and light chain pairing from a single experiment and experimental condition. These results demonstrate the potential of top-down and middle-down proteomics to significantly streamline therapeutic antibody discovery.


Assuntos
Anticorpos Monoclonais/química , Sequência de Aminoácidos , Antineoplásicos Imunológicos/química , Fragmentos Fab das Imunoglobulinas/análise , Cadeias Pesadas de Imunoglobulinas/análise , Cadeias Leves de Imunoglobulina/análise , Espectrometria de Massas , Fotólise , Trastuzumab/química , Raios Ultravioleta
6.
Anal Chem ; 92(7): 5004-5012, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32142606

RESUMO

Antibody-drug conjugates (ADCs) have recently gained traction in the biomedical community due to their promise for human therapeutics and an alternative to chemotherapy for cancer. Crucial metrics for ADC efficacy, safety, and selectivity are their drug-antibody ratios (DARs). However, DAR characterization (i.e., determining the average number of conjugated drugs on the antibody) through analytical methods remains challenging due to the heterogeneity of drug conjugation as well as the numerous post-translational modifications possible in the monoclonal antibody. Herein, we report on the use of high-resolution ion mobility spectrometry separations in structures for lossless ion manipulations coupled to mass spectrometry (SLIM IMS-MS) for the rapid and simultaneous characterization of the drug load profile (i.e., stoichiometric distribution of the number of conjugated drugs present on the mAb), determination of the weighted average DAR in both the heavy and light chains of a model antibody-drug conjugate, and calculation of the overall DAR of the ADC. After chemical reduction of the ADC and a subsequent 31.5 m SLIM IMS separation, the various drug-bound antibody species could be well resolved for both chains. We also show significantly higher resolution separations were possible for these large ions with SLIM IMS as compared to ones performed on a commercially available (1 m) drift tube IMS-MS platform. We expect high-resolution SLIM IMS separations will augment the existing toolbox for ADC characterization, particularly to enable the rapid optimization of DAR for a given ADC and thus better understand its potential toxicity and potency.


Assuntos
Anticorpos Monoclonais/química , Imunoconjugados/química , Preparações Farmacêuticas/química , Humanos , Espectrometria de Massas , Estrutura Molecular
7.
Anal Chem ; 92(10): 7289-7298, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32314907

RESUMO

Characterization of the metabolic heterogeneity in cell populations requires the analysis of single cells. Most current methods in single-cell analysis rely on cell manipulation, potentially altering the abundance of metabolites in individual cells. A small sample volume and the chemical diversity of metabolites are additional challenges in single-cell metabolomics. Here, we describe the combination of fiber-based laser ablation electrospray ionization (f-LAESI) with 21 T Fourier transform ion cyclotron resonance mass spectrometry (21TFTICR-MS) for in situ single-cell metabolic profiling in plant tissue. Single plant cells infected by bacteria were selected and sampled directly from the tissue without cell manipulation through mid-infrared ablation with a fine optical fiber tip for ionization by f-LAESI. Ultrahigh performance 21T-FTICR-MS enabled the simultaneous capture of isotopic fine structures (IFSs) for 47 known and 11 unknown compounds, thus elucidating their elemental compositions from single cells and providing information on metabolic heterogeneity in the cell population.


Assuntos
Glycine max/citologia , Glycine max/metabolismo , Metabolômica , Análise de Célula Única , Bradyrhizobium/metabolismo , Isótopos de Oxigênio , Isótopos de Potássio , Glycine max/microbiologia , Espectrometria de Massas por Ionização por Electrospray
8.
Nat Methods ; 14(9): 909-914, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28783154

RESUMO

Top-down proteomics, the analysis of intact proteins in their endogenous form, preserves valuable information about post-translation modifications, isoforms and proteolytic processing. The quality of top-down liquid chromatography-tandem MS (LC-MS/MS) data sets is rapidly increasing on account of advances in instrumentation and sample-processing protocols. However, top-down mass spectra are substantially more complex than conventional bottom-up data. New algorithms and software tools for confident proteoform identification and quantification are needed. Here we present Informed-Proteomics, an open-source software suite for top-down proteomics analysis that consists of an LC-MS feature-finding algorithm, a database search algorithm, and an interactive results viewer. We compare our tool with several other popular tools using human-in-mouse xenograft luminal and basal breast tumor samples that are known to have significant differences in protein abundance based on bottom-up analysis.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Proteoma/análise , Proteoma/química , Software , Espectrometria de Massas em Tandem/métodos , Interface Usuário-Computador , Algoritmos , Linguagens de Programação , Proteômica/métodos , Integração de Sistemas
9.
Anal Chem ; 91(8): 5028-5035, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30821434

RESUMO

Mass spectrometry (MS) is an indispensable analytical tool to capture the array of metabolites within complex biological systems. However, conventional MS-based metabolomic workflows require extensive sample processing and separation resulting in limited throughput and potential alteration of the native molecular states in these systems. Ambient ionization methods, capable of sampling directly from tissues, circumvent some of these issues but require high-performance MS to resolve the molecular complexity within these samples. Here, we demonstrate a unique combination of laser ablation electrospray ionization (LAESI) coupled with a 21 tesla Fourier transform ion cyclotron resonance (21T-FTICR) for direct MS analysis and imaging applications. This analytical platform provides isotopic fine structure information directly from biological tissues, enabling the rapid assignment of molecular formulas and delivering a higher degree of confidence for molecular identification.


Assuntos
Glycine max/metabolismo , Lasers , Limite de Detecção , Imagem Molecular/métodos , Espectrometria de Massas por Ionização por Electrospray , Desenho de Equipamento , Imagem Molecular/instrumentação
10.
J Proteome Res ; 17(11): 3791-3800, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30226781

RESUMO

Top-down proteomics is an emerging analytical strategy to characterize combinatorial protein post-translational modifications (PTMs). However, sample complexity and small mass differences between chemically closely related proteoforms often limit the resolution attainable by separations employing a single liquid chromatographic (LC) principle. In particular, for ultramodified proteins like histones, extensive and time-consuming fractionation is needed to achieve deep proteoform coverage. Herein, we present the first online nanoflow comprehensive two-dimensional liquid chromatography (nLC×LC) platform top-down mass spectrometry analysis of histone proteoforms. The described two-dimensional LC system combines weak cation exchange chromatography under hydrophilic interaction LC conditions (i.e., charge- and hydrophilicity-based separation) with reversed phase liquid chromatography (i.e., hydrophobicity-based separation). The two independent chemical selectivities were run at nanoflows (300 nL/min) and coupled online with high-resolution mass spectrometry employing ultraviolet photodissociation (UVPD-HRMS). The nLC×LC workflow increased the number of intact protein masses observable relative to one-dimensional approaches and allowed characterization of hundreds of proteoforms starting from limited sample quantities (∼1.5 µg).


Assuntos
Cromatografia por Troca Iônica/métodos , Cromatografia de Fase Reversa/métodos , Histonas/isolamento & purificação , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Cromatografia por Troca Iônica/instrumentação , Cromatografia de Fase Reversa/instrumentação , Misturas Complexas/química , Células HeLa , Histonas/química , Histonas/classificação , Histonas/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteômica/instrumentação , Espectrofotometria Ultravioleta/instrumentação , Espectrofotometria Ultravioleta/métodos , Eletricidade Estática , Espectrometria de Massas em Tandem/instrumentação , Espectrometria de Massas em Tandem/métodos
11.
J Proteome Res ; 17(3): 1321-1325, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29397739

RESUMO

The Consortium for Top-Down Proteomics (CTDP) proposes a standardized notation, ProForma, for writing the sequence of fully characterized proteoforms. ProForma provides a means to communicate any proteoform by writing the amino acid sequence using standard one-letter notation and specifying modifications or unidentified mass shifts within brackets following certain amino acids. The notation is unambiguous, human-readable, and can easily be parsed and written by bioinformatic tools. This system uses seven rules and supports a wide range of possible use cases, ensuring compatibility and reproducibility of proteoform annotations. Standardizing proteoform sequences will simplify storage, comparison, and reanalysis of proteomic studies, and the Consortium welcomes input and contributions from the research community on the continued design and maintenance of this standard.


Assuntos
Biologia Computacional/métodos , Processamento de Proteína Pós-Traducional , Proteoma/análise , Proteômica/métodos , Software , Espectrometria de Massas em Tandem/normas , Sequência de Aminoácidos , Biologia Computacional/estatística & dados numéricos , Bases de Dados de Proteínas/estatística & dados numéricos , Humanos , Disseminação de Informação , Cooperação Internacional , Anotação de Sequência Molecular , Proteoma/genética , Proteoma/metabolismo , Proteômica/estatística & dados numéricos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
12.
Anal Chem ; 90(9): 5557-5562, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29613776

RESUMO

Mass spectrometric characterization of large biomolecules, such as intact proteins, requires the specificity afforded by ultrahigh resolution mass measurements performed at both the intact mass and product ion levels. Although the performance of time-of-flight mass analyzers is steadily increasing, the choice of mass analyzer for large biomolecules (e.g., proteins >50 kDa) is generally limited to the Fourier transform family of mass analyzers such as Orbitrap and ion cyclotron resonance (FTICR-MS), with the latter providing unmatched mass resolving power and measurement accuracy. Yet, protein analyses using FTMS are largely hindered by the low acquisition rates of spectra with ultrahigh resolving power. Frequency multiple detection schemes enable FTICR-MS to overcome this fundamental barrier and achieve resolving powers and acquisition speeds 4× greater than the limits imposed by magnetic field strength. Here we expand upon earlier work on the implementation of this technique for biomolecular characterization. We report the coupling of 21T FTICR-MS, 4X frequency multiplication, ion trapping field harmonization technology, and spectral data processing methods to achieve unprecedented acquisition rates and resolving power in mass spectrometry of large intact proteins. Isotopically resolved spectra of multiply charged ubiquitin ions were acquired using detection periods as short as 12 ms. Large proteins such as apo-transferrin (MW = 78 kDa) and monoclonal antibody (MW = 150 kDa) were isotopically resolved with detection periods of 384 and 768 ms, respectively. These results illustrate the future capability of accurate characterization of large proteins on time scales compatible with online separations.


Assuntos
Anticorpos Monoclonais/análise , Apoproteínas/análise , Transferrina/análise , Ubiquitina/análise , Animais , Bovinos , Eritrócitos/química , Análise de Fourier , Humanos , Espectrometria de Massas
13.
Anal Chem ; 90(18): 10819-10827, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30118589

RESUMO

Compared to traditional collision induced dissociation methods, electron capture dissociation (ECD) provides more comprehensive characterization of large peptides and proteins as well as preserves labile post-translational modifications. However, ECD experiments are generally restricted to the high magnetic fields of FTICR-MS that enable the reaction of large polycations and electrons. Here, we demonstrate the use of an electromagnetostatic ECD cell to perform ECD and hybrid ECD methods utilizing 193 nm photons (ECuvPD) or collisional activation (EChcD) in a benchtop quadrupole-Orbitrap mass spectrometer. The electromagnetostatic ECD cell was designed to replace the transfer octapole between the quadrupole and C-trap. This implementation enabled facile installation of the ECD cell, and ions could be independently subjected to ECD, UVPD, HCD, or any combination. Initial benchmarking and characterization of fragmentation propensities for ECD, ECuvPD, and EChcD were performed using ubiquitin (8.6 kDa). ECD yielded extensive sequence coverage for low charge states of ubiquitin as well as for the larger protein carbonic anhydrase II (29 kDa), indicating pseudo-activated ion conditions. Additionally, relatively high numbers of d- and w-ions enable differentiation of isobaric isoleucine and leucine residues and suggest a distribution of electron energies yield hot-ECD type fragmentation. We report the most comprehensive characterization to date for model proteins up to 29 kDa and a monoclonal antibody at the subunit level. ECD, ECuvPD, and EChcD yielded 93, 95, and 91% sequence coverage, respectively, for carbonic anhydrase II (29 kDa), and targeted online analyses of monoclonal antibody subunits yielded 86% overall antibody sequence coverage.


Assuntos
Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Anticorpos Monoclonais/química , Anidrase Carbônica II/química , Cromatografia Líquida/métodos , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem/instrumentação , Ubiquitina/química
14.
Environ Sci Technol ; 51(1): 119-127, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28005381

RESUMO

Secondary organic aerosol (SOA), formed in the photooxidation of diesel fuel, biodiesel fuel, and 20% biodiesel fuel/80% diesel fuel mixture, are prepared under high-NOx conditions in the presence and absence of sulfur dioxide (SO2), ammonia (NH3), and relative humidity (RH). The composition of condensed-phase organic compounds in SOA is measured using several complementary techniques including aerosol mass spectrometry (AMS), high-resolution nanospray desorption electrospray ionization mass spectrometry (nano-DESI/HRMS), and ultrahigh resolution and mass accuracy 21T Fourier transform ion cyclotron resonance mass spectrometry (21T FT-ICR MS). Results demonstrate that sulfuric acid and condensed organosulfur species formed in photooxidation experiments with SO2 are present in the SOA particles. Fewer organosulfur species are formed in the high humidity experiments, performed at RH 90%, in comparison with experiments done under dry conditions. There is a strong overlap of organosulfur species observed in this study with previous field and chamber studies of SOA. Many MS peaks of organosulfates (R-OS(O)2OH) previously designated as biogenic or of unknown origin in field studies might have originated from anthropogenic sources, such as photooxidation of hydrocarbons present in diesel and biodiesel fuel.


Assuntos
Biocombustíveis , Gasolina , Aerossóis , Compostos Orgânicos/química , Oxirredução
15.
Anal Chem ; 88(6): 3019-23, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26882021

RESUMO

We revisited the implementation of 193 nm ultraviolet photodissociation (UVPD) within the ion cyclotron resonance (ICR) cell of a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer. UVPD performance characteristics were examined in the context of recent developments in the understanding of UVPD and in-cell tandem mass spectrometry. Efficient UVPD and photo-ECD of a model peptide and proteins within the ICR cell of a FT-ICR mass spectrometer are accomplished through appropriate modulation of laser pulse timing, relative to ion magnetron motion and the potential applied to an ion optical element upon which photons impinge. It is shown that UVPD yields efficient and extensive fragmentation, resulting in excellent sequence coverage for model peptide and protein cations.


Assuntos
Ciclotrons , Análise de Fourier , Raios Ultravioleta , Sequência de Aminoácidos , Espectrometria de Massas em Tandem , Vácuo
16.
Anal Chem ; 87(18): 9396-402, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26322807

RESUMO

Fast online chemical derivatization of peptides with an aromatic label for enhanced 193 nm ultraviolet photodissociation (UVPD) is demonstrated using a dual electrospray reactor implemented on the front-end of a linear ion trap (LIT) mass spectrometer. The reactor facilitates the intersection of protonated peptides with a second population of chromogenic 4-formyl-1,3-benzenedisulfonic acid (FBDSA) anions to promote real-time formation of ion/ion complexes at atmospheric pressure. Subsequent collisional activation of the ion/ion intermediate results in Schiff base formation generated via reaction between a primary amine in the peptide cation and the aldehyde moiety of the FBDSA anion. Utilizing 193 nm UVPD as the subsequent activation step in the MS(3) workflow results in acquisition of greater primary sequence information relative to conventional collision induced dissociation (CID). Furthermore, Schiff-base-modified peptides exhibit on average a 20% increase in UVPD efficiency compared to their unmodified counterparts. Due to the efficiency of covalent labeling achieved with the dual spray reactor, we demonstrate that this strategy can be integrated into a high-throughput LC-MS(n) workflow for rapid derivatization of peptide mixtures.


Assuntos
Peptídeos/química , Processos Fotoquímicos , Sequência de Aminoácidos , Espectrometria de Massas , Dados de Sequência Molecular , Bases de Schiff/química , Ácidos Sulfônicos/química , Raios Ultravioleta
17.
Mol Cell Proteomics ; 12(9): 2604-14, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23695934

RESUMO

The use of ultraviolet photodissociation (UVPD) for the activation and dissociation of peptide anions is evaluated for broader coverage of the proteome. To facilitate interpretation and assignment of the resulting UVPD mass spectra of peptide anions, the MassMatrix database search algorithm was modified to allow automated analysis of negative polarity MS/MS spectra. The new UVPD algorithms were developed based on the MassMatrix database search engine by adding specific fragmentation pathways for UVPD. The new UVPD fragmentation pathways in MassMatrix were rigorously and statistically optimized using two large data sets with high mass accuracy and high mass resolution for both MS(1) and MS(2) data acquired on an Orbitrap mass spectrometer for complex Halobacterium and HeLa proteome samples. Negative mode UVPD led to the identification of 3663 and 2350 peptides for the Halo and HeLa tryptic digests, respectively, corresponding to 655 and 645 peptides that were unique when compared with electron transfer dissociation (ETD), higher energy collision-induced dissociation, and collision-induced dissociation results for the same digests analyzed in the positive mode. In sum, 805 and 619 proteins were identified via UVPD for the Halobacterium and HeLa samples, respectively, with 49 and 50 unique proteins identified in contrast to the more conventional MS/MS methods. The algorithm also features automated charge determination for low mass accuracy data, precursor filtering (including intact charge-reduced peaks), and the ability to combine both positive and negative MS/MS spectra into a single search, and it is freely open to the public. The accuracy and specificity of the MassMatrix UVPD search algorithm was also assessed for low resolution, low mass accuracy data on a linear ion trap. Analysis of a known mixture of three mitogen-activated kinases yielded similar sequence coverage percentages for UVPD of peptide anions versus conventional collision-induced dissociation of peptide cations, and when these methods were combined into a single search, an increase of up to 13% sequence coverage was observed for the kinases. The ability to sequence peptide anions and cations in alternating scans in the same chromatographic run was also demonstrated. Because ETD has a significant bias toward identifying highly basic peptides, negative UVPD was used to improve the identification of the more acidic peptides in conjunction with positive ETD for the more basic species. In this case, tryptic peptides from the cytosolic section of HeLa cells were analyzed by polarity switching nanoLC-MS/MS utilizing ETD for cation sequencing and UVPD for anion sequencing. Relative to searching using ETD alone, positive/negative polarity switching significantly improved sequence coverages across identified proteins, resulting in a 33% increase in unique peptide identifications and more than twice the number of peptide spectral matches.


Assuntos
Cromatografia Líquida/métodos , Bases de Dados de Proteínas , Ensaios de Triagem em Larga Escala , Proteoma/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Raios Ultravioleta , Algoritmos , Ânions , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Halobacterium/metabolismo , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Peso Molecular , Peptídeos/metabolismo , Proteoma/química , Curva ROC , Reprodutibilidade dos Testes , Análise de Sequência de Proteína
18.
Proteomics ; 14(10): 1130-40, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24644084

RESUMO

Pilot Project #1--the identification and characterization of human histone H4 proteoforms by top-down MS--is the first project launched by the Consortium for Top-Down Proteomics (CTDP) to refine and validate top-down MS. Within the initial results from seven participating laboratories, all reported the probability-based identification of human histone H4 (UniProt accession P62805) with expectation values ranging from 10(-13) to 10(-105). Regarding characterization, a total of 74 proteoforms were reported, with 21 done so unambiguously; one new PTM, K79ac, was identified. Inter-laboratory comparison reveals aspects of the results that are consistent, such as the localization of individual PTMs and binary combinations, while other aspects are more variable, such as the accurate characterization of low-abundance proteoforms harboring >2 PTMs. An open-access tool and discussion of proteoform scoring are included, along with a description of general challenges that lie ahead including improved proteoform separations prior to mass spectrometric analysis, better instrumentation performance, and software development.


Assuntos
Proteômica/métodos , Cromatografia Líquida/métodos , Análise por Conglomerados , Células HeLa , Histonas/análise , Histonas/química , Humanos , Espectrometria de Massas/métodos , Projetos Piloto , Processamento de Proteína Pós-Traducional , Software
19.
Anal Chem ; 86(4): 2185-92, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24447299

RESUMO

Intact protein characterization using mass spectrometry thus far has been achieved at the cost of throughput. Presented here is the application of 193 nm ultraviolet photodissociation (UVPD) for top down identification and characterization of proteins in complex mixtures in an online fashion. Liquid chromatographic separation at the intact protein level coupled with fast UVPD and high-resolution detection resulted in confident identification of 46 unique sequences compared to 44 using HCD from prepared Escherichia coli ribosomes. Importantly, nearly all proteins identified in both the UVPD and optimized HCD analyses demonstrated a substantial increase in confidence in identification (as defined by an average decrease in E value of ∼40 orders of magnitude) due to the higher number of matched fragment ions. Also shown is the potential for high-throughput characterization of intact proteins via liquid chromatography (LC)-UVPD-MS of molecular weight-based fractions of a Saccharomyces cerevisiae lysate. In total, protein products from 215 genes were identified and found in 292 distinct proteoforms, 168 of which contained some type of post-translational modification.


Assuntos
Espectroscopia Fotoeletrônica/métodos , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Animais , Cromatografia Líquida/métodos , Cavalos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Fatores de Tempo
20.
J Am Chem Soc ; 135(34): 12646-51, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23697802

RESUMO

The top-down approach to proteomics offers compelling advantages due to the potential to provide complete characterization of protein sequence and post-translational modifications. Here we describe the implementation of 193 nm ultraviolet photodissociation (UVPD) in an Orbitrap mass spectrometer for characterization of intact proteins. Near-complete fragmentation of proteins up to 29 kDa is achieved with UVPD including the unambiguous localization of a single residue mutation and several protein modifications on Pin1 (Q13526), a protein implicated in the development of Alzheimer's disease and in cancer pathogenesis. The 5 ns, high-energy activation afforded by UVPD exhibits far less precursor ion-charge state dependence than conventional collision- and electron-based dissociation methods.


Assuntos
Peptidilprolil Isomerase/análise , Proteômica , Raios Ultravioleta , Humanos , Espectrometria de Massas , Modelos Moleculares , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/genética , Processos Fotoquímicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA