Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
PLoS Pathog ; 20(8): e1012436, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39196893

RESUMO

Viruses capable of causing persistent infection have developed sophisticated mechanisms for evading host immunity, and understanding these processes can reveal novel features of the host immune system. One such virus, human pegivirus (HPgV), infects ~15% of the global human population, but little is known about its biology beyond the fact that it does not cause overt disease. We passaged a pegivirus isolate of feral brown rats (RPgV) in immunodeficient laboratory mice to develop a mouse-adapted virus (maPgV) that established persistent high-titer infection in a majority of wild-type laboratory mice. maRPgV viremia was detected in the blood of mice for >300 days without apparent disease, closely recapitulating the hallmarks of HPgV infection in humans. We found a pro-viral role for type-I interferon in chronic infection; a lack of PD-1-mediated tolerance to PgV infection; and multiple mechanisms by which PgV immunity can be achieved by an immunocompetent host. These data indicate that the PgV immune evasion strategy has aspects that are both common and unique among persistent viral infections. The creation of maPgV represents the first PgV infection model in wild-type mice, thus opening the entire toolkit of the mouse host to enable further investigation of this persistent RNA virus infections.


Assuntos
Infecções por Flaviviridae , Flaviviridae , Animais , Camundongos , Infecções por Flaviviridae/virologia , Infecções por Flaviviridae/imunologia , Flaviviridae/genética , Flaviviridae/imunologia , Infecção Persistente/imunologia , Infecção Persistente/virologia , Ratos , Evasão da Resposta Imune , Camundongos Endogâmicos C57BL , Humanos
2.
Emerg Infect Dis ; 30(4): 721-731, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526136

RESUMO

Genetically diverse simian arteriviruses (simarteriviruses) naturally infect geographically and phylogenetically diverse monkeys, and cross-species transmission and emergence are of considerable concern. Characterization of most simarteriviruses beyond sequence analysis has not been possible because the viruses fail to propagate in the laboratory. We attempted to isolate 4 simarteriviruses, Kibale red colobus virus 1, Pebjah virus, simian hemorrhagic fever virus, and Southwest baboon virus 1, by inoculating an immortalized grivet cell line (known to replicate simian hemorrhagic fever virus), primary macaque cells, macrophages derived from macaque induced pluripotent stem cells, and mice engrafted with macaque CD34+-enriched hematopoietic stem cells. The combined effort resulted in successful virus isolation; however, no single approach was successful for all 4 simarteriviruses. We describe several approaches that might be used to isolate additional simarteriviruses for phenotypic characterization. Our results will expedite laboratory studies of simarteriviruses to elucidate virus-host interactions, assess zoonotic risk, and develop medical countermeasures.


Assuntos
Arterivirus , Animais , Camundongos , Arterivirus/genética , Macaca , Macrófagos , Linhagem Celular
3.
J Virol ; 97(10): e0093023, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37792000

RESUMO

IMPORTANCE: Mouse models of viral infection play an especially large role in virology. In 1960, a mouse virus, lactate dehydrogenase-elevating virus (LDV), was discovered and found to have the peculiar ability to evade clearance by the immune system, enabling it to persistently infect an individual mouse for its entire lifespan without causing overt disease. However, researchers were unable to grow LDV in culture, ultimately resulting in the demise of this system as a model of failed immunity. We solve this problem by identifying the cell-surface molecule CD163 as the critical missing component in cell-culture systems, enabling the growth of LDV in immortalized cell lines for the first time. This advance creates abundant opportunities for further characterizing LDV in order to study both failed immunity and the family of viruses to which LDV belongs, Arteriviridae (aka, arteriviruses).


Assuntos
Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Técnicas de Cultura de Células , Expressão Ectópica do Gene , Vírus Elevador do Lactato Desidrogenase , Receptores de Superfície Celular , Animais , Camundongos , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Linhagem Celular/virologia , Vírus Elevador do Lactato Desidrogenase/genética , Vírus Elevador do Lactato Desidrogenase/crescimento & desenvolvimento , Vírus Elevador do Lactato Desidrogenase/imunologia , Vírus Elevador do Lactato Desidrogenase/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Fatores de Tempo
4.
Nat Commun ; 15(1): 6726, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112502

RESUMO

Arteriviruses infect a variety of mammalian hosts, but the receptors used by these viruses to enter cells are poorly understood. We identified the neonatal Fc receptor (FcRn) as an important pro-viral host factor via comparative genome-wide CRISPR-knockout screens with multiple arteriviruses. Using a panel of cell lines and divergent arteriviruses, we demonstrate that FcRn is required for the entry step of arterivirus infection and serves as a molecular barrier to arterivirus cross-species infection. We also show that FcRn synergizes with another known arterivirus entry factor, CD163, to mediate arterivirus entry. Overexpression of FcRn and CD163 sensitizes non-permissive cells to infection and enables the culture of fastidious arteriviruses. Treatment of multiple cell lines with a pre-clinical anti-FcRn monoclonal antibody blocked infection and rescued cells from arterivirus-induced death. Altogether, this study identifies FcRn as a novel pan-arterivirus receptor, with implications for arterivirus emergence, cross-species infection, and host-directed pan-arterivirus countermeasure development.


Assuntos
Antígenos de Histocompatibilidade Classe I , Receptores Fc , Receptores Virais , Receptores Fc/metabolismo , Receptores Fc/genética , Humanos , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Animais , Receptores Virais/metabolismo , Receptores Virais/genética , Linhagem Celular , Internalização do Vírus , Antígenos CD/metabolismo , Antígenos CD/genética , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Células HEK293
5.
J Mol Med (Berl) ; 100(9): 1253-1265, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35538149

RESUMO

Many autoimmune diseases exhibit a strikingly increased prevalence in females, with primary Sjögren's syndrome (pSS) being the most female-predominant example. However, the molecular basis underlying the female-bias in pSS remains elusive. To address this knowledge gap, we performed genome-wide, allele-specific profiling of minor salivary gland-derived mesenchymal stromal cells (MSCs) from pSS patients and control subjects, and detected major differences in the regulation of X-linked genes. In control female MSCs, X-linked genes were expressed from both paternal and maternal X chromosomes with a median paternal ratio of ~ 0.5. However, in pSS female MSCs, X-linked genes exhibited preferential expression from one of the two X chromosomes. Concomitantly, pSS MSCs showed decrease in XIST levels and reorganization of H3K27me3+ foci in the nucleus. Moreover, the HLA-locus-expressed miRNA miR6891-5p was decreased in pSS MSCs. miR6891-5p inhibition in control MSCs caused XIST dysregulation, ectopic silencing, and allelic skewing. Allelic skewing was accompanied by the mislocation of protein products encoded by the skewed genes, which was recapitulated by XIST and miR6891-5p disruption in control MSCs. Our data reveal X skewing as a molecular hallmark of pSS and highlight the importance of restoring X-chromosomal allelic balance for pSS treatment. KEY MESSAGES: X-linked genes exhibit skewing in primary Sjögren's syndrome (pSS). X skewing in pSS associates with alterations in H3K27me3 deposition. pSS MSCs show decreased levels of miR6891-5p, a HLA-expressed miRNA. miR6891-5p inhibition causes H3K27me3 dysregulation and allelic skewing.


Assuntos
Genes Ligados ao Cromossomo X , MicroRNAs , Síndrome de Sjogren , Feminino , Histonas/genética , Humanos , MicroRNAs/genética , Síndrome de Sjogren/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA