Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 604(7907): 684-688, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35444275

RESUMO

Remarkably well-preserved soft tissues in Mesozoic fossils have yielded substantial insights into the evolution of feathers1. New evidence of branched feathers in pterosaurs suggests that feathers originated in the avemetatarsalian ancestor of pterosaurs and dinosaurs in the Early Triassic2, but the homology of these pterosaur structures with feathers is controversial3,4. Reports of pterosaur feathers with homogeneous ovoid melanosome geometries2,5 suggest that they exhibited limited variation in colour, supporting hypotheses that early feathers functioned primarily in thermoregulation6. Here we report the presence of diverse melanosome geometries in the skin and simple and branched feathers of a tapejarid pterosaur from the Early Cretaceous found in Brazil. The melanosomes form distinct populations in different feather types and the skin, a feature previously known only in theropod dinosaurs, including birds. These tissue-specific melanosome geometries in pterosaurs indicate that manipulation of feather colour-and thus functions of feathers in visual communication-has deep evolutionary origins. These features show that genetic regulation of melanosome chemistry and shape7-9 was active early in feather evolution.


Assuntos
Evolução Biológica , Dinossauros , Plumas , Fósseis , Melanossomas , Animais , Dinossauros/anatomia & histologia , Pigmentação
2.
Proc Natl Acad Sci U S A ; 121(24): e2318189121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38814876

RESUMO

Fluorescence, the optical phenomenon whereby short-wavelength light is absorbed and emitted at longer wavelengths, has been widely described in aquatic habitats, in both invertebrates and fish. Recent years have seen a stream of articles reporting fluorescence, ranging from frogs, platypus, to even fully terrestrial organisms such as flying squirrels, often explicitly or implicitly linking the presence of fluorescence with sexual selection and communication. However, many of these studies fail to consider the physiological requirements of evolutionary stable signaling systems, the environmental dependence of perception, or the possible adaptive role of fluorescent coloration in a noncommunicative context. More importantly, the idea that fluorescence may simply constitute an indirect by-product of selection on other traits is often not explored. This is especially true for terrestrial systems where environmental light conditions are often not amenable for fluorescent signaling in contrast to, for example, aquatic habitats in which spectral properties of water promote functional roles for fluorescence. Despite the appeal of previously unknown ways in which coloration may drive evolution, the investigation of a putative role of fluorescence in communication must be tempered by a realistic understanding of its limitations. Here, we not only highlight and discuss the key body of literature but also address the potential pitfalls when reporting fluorescence and how to solve them. In addition, we propose exciting different research avenues to advance the field of tetrapod fluorescence.


Assuntos
Evolução Biológica , Animais , Fluorescência , Vertebrados/fisiologia , Comunicação Animal , Ecossistema
3.
Physiol Rev ; 99(1): 1-19, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30255724

RESUMO

Melanosomes are organelles that produce and store melanin, a widespread biological pigment with a unique suite of properties including high refractive index, semiconducting capabilities, material stiffness, and high fossilization potential. They are involved in numerous critical biological functions in organisms across the tree of life. Individual components such as melanin chemistry and melanosome development have recently been addressed, but a broad synthesis is needed. Here, we review the hierarchical structure, development, functions, and evolution of melanosomes. We highlight variation in melanin chemistry and melanosome morphology and how these may relate to function. For example, we review what is known of the chemical differences between different melanin types (eumelanin, pheomelanin, allomelanin) and whether/how melanosome morphology relates to chemistry and color. We integrate the distribution of melanin across living organisms with what is known from the fossil record and produce hypotheses on its evolution. We suggest that melanin was present in life forms early in evolutionary history and that melanosomes evolved at the origin of organelles. Throughout, we discuss the (sometimes gaping) holes in our knowledge and suggest areas that need particular attention as we move forward in our understanding of these still-mysterious organelles and the materials that they contain.


Assuntos
Evolução Biológica , Melaninas/genética , Melanossomas/genética , Estrutura Molecular , Animais , Humanos
4.
Chem Rev ; 124(11): 7165-7213, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38758918

RESUMO

Melanin, especially integumentary melanin, interacts in numerous ways with electromagnetic radiation, leading to a set of critical functions, including radiation protection, UV-protection, pigmentary and structural color productions, and thermoregulation. By harnessing these functions, melanin and melanin-like materials can be widely applied to diverse applications with extraordinary performance. Here we provide a unified overview of the melanin family (all melanin and melanin-like materials) and their interactions with the complete electromagnetic radiation spectrum (X-ray, Gamma-ray, UV, visible, near-infrared), which until now has been absent from the literature and is needed to establish a solid fundamental base to facilitate their future investigation and development. We begin by discussing the chemistries and morphologies of both natural and artificial melanin, then the fundamentals of melanin-radiation interactions, and finally the exciting new developments in high-performance melanin-based functional materials that exploit these interactions. This Review provides both a comprehensive overview and a discussion of future perspectives for each subfield of melanin that will help direct the future development of melanin from both fundamental and applied perspectives.


Assuntos
Radiação Eletromagnética , Melaninas , Melaninas/química , Melaninas/metabolismo , Humanos , Animais
5.
Syst Biol ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289860

RESUMO

How and why certain groups become speciose is a key question in evolutionary biology. Novel traits that enable diversification by opening new ecological niches are likely important mechanisms. However, ornamental traits can also promote diversification by opening up novel sensory niches and thereby creating novel inter-specific interactions. More specifically, ornamental colours may enable more precise and/or easier species recognition, and may act as key innovations by increasing the number of species-specific patterns and promoting diversification. While the influence of colouration on diversification is well-studied, the influence of the mechanisms that produce those colours (e.g. pigmentary, nanostructural) is less so, even though the ontogeny and evolution of these mechanisms differ. We estimated a new phylogenetic tree for 121 sunbird species and combined colour data of 106 species with a range of phylogenetic tools to test the hypothesis that the evolution of novel colour mechanisms increases diversification in sunbirds, one of the most colourful bird clades. Results suggest that (1) the evolution of novel colour mechanisms expands the visual sensory niche, increasing the number of achievable colours. (2) Structural colouration diverges more readily across the body than pigment-based colouration, enabling an increase in colour complexity. (3) Novel colour mechanisms might minimize trade-offs between natural and sexual selection such that colour can function both as camouflage and conspicuous signal. (4) Despite structural colours being more colourful and mobile, only melanin-based colouration is positively correlated with net diversification. Together, these findings explain why colour distances increase with increasing number of sympatric species, even though packing of colour space would predict otherwise.

6.
Biol Lett ; 19(12): 20230304, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087942

RESUMO

Evolutionary biologists have long been interested in understanding the factors that promote diversification in organisms, often focussing on distinct and/or conspicuous phenotypes with direct effects on natural or sexual selection such as body size and plumage coloration. However, multiple traits that potentially influence net diversification are not conspicuous and/or might be concealed. One such trait, the dark, melanin-rich skin concealed beneath the feathers, evolved more than 100 times during avian evolution, frequently in association with white feathers on the crown and UV-rich environments, suggesting that it is a UV-photoprotective adaptation. Furthermore, multiple species are polymorphic, having both light and dark skin potentially aiding occupation in different UV radiation environments. As such these polymorphisms are predicted to occur in species with large latitudinal variation in their distribution. Furthermore, by alleviating evolutionary constraints on feather colour, the evolution of dark skin may promote net diversification. Here, using an expanded dataset on bird skin coloration of 3033 species we found that more than 19% of species had dark skin. In contrast to our prediction, dark skinned birds have smaller distribution ranges. Furthermore, both dark skin and polymorphism in skin coloration promote net diversification. These results suggest that even concealed traits can influence large scale evolutionary events such as diversification in birds.


Assuntos
Melaninas , Pigmentação da Pele , Animais , Pigmentação da Pele/genética , Melaninas/genética , Evolução Biológica , Aves/genética , Raios Ultravioleta , Plumas , Pigmentação
7.
J Am Chem Soc ; 143(7): 2622-2637, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33560127

RESUMO

Melanin is ubiquitous in living organisms across different biological kingdoms of life, making it an important, natural biomaterial. Its presence in nature from microorganisms to higher animals and plants is attributed to the many functions of melanin, including pigmentation, radical scavenging, radiation protection, and thermal regulation. Generally, melanin is classified into five types-eumelanin, pheomelanin, neuromelanin, allomelanin, and pyomelanin-based on the various chemical precursors used in their biosynthesis. Despite its long history of study, the exact chemical makeup of melanin remains unclear, and it moreover has an inherent diversity and complexity of chemical structure, likely including many functions and properties that remain to be identified. Synthetic mimics have begun to play a broader role in unraveling structure and function relationships of natural melanins. In the past decade, polydopamine, which has served as the conventional form of synthetic eumelanin, has dominated the literature on melanin-based materials, while the synthetic analogues of other melanins have received far less attention. In this perspective, we will discuss the synthesis of melanin materials with a special focus beyond polydopamine. We will emphasize efforts to elucidate biosynthetic pathways and structural characterization approaches that can be harnessed to interrogate specific structure-function relationships, including electron paramagnetic resonance (EPR) and solid-state nuclear magnetic resonance (ssNMR) spectroscopy. We believe that this timely Perspective will introduce this class of biopolymer to the broader chemistry community, where we hope to stimulate new opportunities in novel, melanin-based poly-functional synthetic materials.


Assuntos
Melaninas/química , Espectroscopia de Ressonância de Spin Eletrônica , Indóis/química , Indóis/metabolismo , Espectroscopia de Ressonância Magnética , Melaninas/biossíntese , Conformação Molecular , Polímeros/química , Polímeros/metabolismo
8.
Mol Ecol ; 30(10): 2262-2284, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33772941

RESUMO

With functions as diverse as communication, protection and thermoregulation, coloration is one of the most important traits in lizards. The ability to change colour as a function of varying social and environmental conditions is thus an important innovation. While colour change is present in animals ranging from squids, to fish and reptiles, not much is known about the mechanisms behind it. Traditionally, colour change was attributed to migration of pigments, in particular melanin. More recent work has shown that the changes in nanostructural configuration inside iridophores are able to produce a wide palette of colours. However, the genetic mechanisms underlying colour, and colour change in particular, remain unstudied. Here we use a combination of transcriptomic and microscopic data to show that melanin, iridophores and pteridines are the main colour-producing mechanisms in Agama atra, and provide molecular and structural data suggesting that rapid colour change is achieved via melanin dispersal in combination with iridophore organization. This work demonstrates the power of combining genotypic (gene expression) and phenotypic (microscopy) information for addressing physiological questions, providing a basis for future studies of colour change.


Assuntos
Lagartos , Animais , Cor , Lagartos/genética , Melaninas/genética , Pigmentação/genética
9.
J Hered ; 112(5): 417-429, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-33885791

RESUMO

Iridescence is widespread in the living world, occurring in organisms as diverse as bacteria, plants, and animals. Yet, compared to pigment-based forms of coloration, we know surprisingly little about the developmental and molecular bases of the structural colors that give rise to iridescence. Birds display a rich diversity of iridescent structural colors that are produced in feathers by the arrangement of melanin-containing organelles called melanosomes into nanoscale configurations, but how these often unusually shaped melanosomes form, or how they are arranged into highly organized nanostructures, remains largely unknown. Here, we use functional genomics to explore the developmental basis of iridescent plumage using superb starlings (Lamprotornis superbus), which produce both iridescent blue and non-iridescent red feathers. Through morphological and chemical analyses, we confirm that hollow, flattened melanosomes in iridescent feathers are eumelanin-based, whereas melanosomes in non-iridescent feathers are solid and amorphous, suggesting that high pheomelanin content underlies red coloration. Intriguingly, the nanoscale arrangement of melanosomes within the barbules was surprisingly similar between feather types. After creating a new genome assembly, we use transcriptomics to show that non-iridescent feather development is associated with genes related to pigmentation, metabolism, and mitochondrial function, suggesting non-iridescent feathers are more energetically expensive to produce than iridescent feathers. However, iridescent feather development is associated with genes related to structural and cellular organization, suggesting that, while nanostructures themselves may passively assemble, barbules and melanosomes may require active organization to give them their shape. Together, our analyses suggest that iridescent feathers form through a combination of passive self-assembly and active processes.


Assuntos
Plumas , Estorninhos , Animais , Expressão Gênica , Iridescência , Pigmentação/genética
10.
Proc Natl Acad Sci U S A ; 115(2): E218-E225, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29279398

RESUMO

Hybrid speciation is rare in vertebrates, and reproductive isolation arising from hybridization is infrequently demonstrated. Here, we present evidence supporting a hybrid-speciation event involving the genetic admixture of the snow-capped (Lepidothrix nattereri) and opal-crowned (Lepidothrix iris) manakins of the Amazon basin, leading to the formation of the hybrid species, the golden-crowned manakin (Lepidothrix vilasboasi). We used a genome-wide SNP dataset together with analysis of admixture, population structure, and coalescent modeling to demonstrate that the golden-crowned manakin is genetically an admixture of these species and does not represent a hybrid zone but instead formed through ancient genetic admixture. We used spectrophotometry to quantify the coloration of the species-specific male crown patches. Crown patches are highly reflective white (snow-capped manakin) or iridescent whitish-blue to pink (opal-crowned manakin) in parental species but are a much less reflective yellow in the hybrid species. The brilliant coloration of the parental species results from nanostructural organization of the keratin matrix feather barbs of the crown. However, using electron microscopy, we demonstrate that the structural organization of this matrix is different in the two parental species and that the hybrid species is intermediate. The intermediate nature of the crown barbs, resulting from past admixture appears to have rendered a duller structural coloration. To compensate for reduced brightness, selection apparently resulted in extensive thickening of the carotenoid-laden barb cortex, producing the yellow crown coloration. The evolution of this unique crown-color signal likely culminated in premating isolation of the hybrid species from both parental species.


Assuntos
Especiação Genética , Hibridização Genética , Passeriformes/genética , Distribuição Animal , Animais , Carotenoides/metabolismo , Plumas/fisiologia , Feminino , Estudo de Associação Genômica Ampla , Queratinas/fisiologia , Masculino , Passeriformes/fisiologia , Polimorfismo de Nucleotídeo Único , Caracteres Sexuais , África do Sul , América do Sul
11.
J Therm Biol ; 96: 102857, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33627285

RESUMO

The osprey (Pandion haliaetus) is a cosmopolitan and long-distant migrant, found at all thermal extremes ranging from polar to tropical climates. Since ospreys may have an unusually flexible thermal physiology due to their migration over, and use of, a wide range of habitats, they represent an interesting study system to explore thermoregulatory adaptations in a raptor. In this study, we investigated the efficiency of heat exchange between body and environment in ospreys using micro-computed tomography (µ-CT), infrared thermography and behavioral observations. µ-CT revealed that the osprey bill has its largest potential for heat exchange at the proximal bill region, where arteries are situated most closely under the surface. However, thermal images of 10 juvenile ospreys showed that the bill contributes to only 0.3% of the bird's total heat exchange. The long legs and protruding claws played a more prominent role as heat dissipation areas with a contribution of 6% and 7%, respectively. Operative thresholds, i.e. the ambient temperature below which heat is lost, were high (>38.5 °C) in these body parts. However, we found no indication of active regulation of heat exchange. Instead we observed multiple behavioral adaptations starting at relatively low ambient temperatures. At 26.3 °C ospreys had a 50% probability of showing panting behavior and above 27.9 °C they additionally spread their wings to enable heat dissipation from the less insulated ventral side. The thermal images revealed that at an ambient temperature of 32.1 °C ospreys had a 50% probability of developing a ≥2 °C and up to 7.5 °C colder stripe on the head, which was likely caused by cutaneous evaporation. Our observations suggest that ospreys more strongly rely on behavioral mechanisms than on active thermal windows to cope with heat stress. This study not only improves our understanding of the role of different body parts in ospreys' total heat exchange with the environment but further provides an insight about additional adaptations of this raptor to cope with heat stress.


Assuntos
Aves/fisiologia , Regulação da Temperatura Corporal , Animais , Bico/irrigação sanguínea , Bico/diagnóstico por imagem , Bico/fisiologia , Extremidades/diagnóstico por imagem , Extremidades/fisiologia , Olho/diagnóstico por imagem , Feminino , Cabeça/diagnóstico por imagem , Cabeça/fisiologia , Casco e Garras/diagnóstico por imagem , Casco e Garras/fisiologia , Masculino , Fenômenos Fisiológicos Oculares , Temperatura , Termografia , Tronco/diagnóstico por imagem , Tronco/fisiologia , Microtomografia por Raio-X
12.
Angew Chem Int Ed Engl ; 60(32): 17464-17471, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-33913253

RESUMO

Melanosomes in nature have diverse morphologies, including spheres, rods, and platelets. By contrast, shapes of synthetic melanins have been almost entirely limited to spherical nanoparticles with few exceptions produced by complex templated synthetic methods. Here, we report a non-templated method to access synthetic melanins with a variety of architectures including spheres, sheets, and platelets. Three 1,8-dihydroxynaphthalene dimers (4-4', 2-4' and 2-2') were used as self-assembling synthons. These dimers pack to form well-defined structures of varying morphologies depending on the isomer. Specifically, distinctive ellipsoidal platelets can be obtained using 4-4' dimers. Solid-state polymerization of the preorganized dimers generates polymeric synthetic melanins while maintaining the initial particle morphologies. This work provides a new route to anisotropic synthetic melanins, where the building blocks are preorganized into specific shapes, followed by solid-state polymerization.


Assuntos
Corantes/química , Naftóis/química , Polímeros/química , Anisotropia , Corantes/síntese química , Naftóis/síntese química , Polimerização , Polímeros/síntese química
13.
J Am Chem Soc ; 142(29): 12802-12810, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32638590

RESUMO

Melanins are a family of heterogeneous biopolymers found ubiquitously across plant, animal, bacterial, and fungal kingdoms where they act variously as pigments and as radiation protection agents. There exist five multifunctional yet structurally and biosynthetically incompletely understood varieties of melanin: eumelanin, neuromelanin, pyomelanin, allomelanin, and pheomelanin. Although eumelanin and allomelanin have been the focus of most radiation protection studies to date, some research suggests that pheomelanin has a better absorption coefficient for X-rays than eumelanin. We reasoned that if a selenium enriched melanin existed, it would be a better X-ray protector than the sulfur-containing pheomelanin because the X-ray absorption coefficient is proportional to the fourth power of the atomic number (Z). Notably, selenium is an essential micronutrient, with the amino acid selenocysteine being genetically encoded in 25 natural human proteins. Therefore, we hypothesize that selenomelanin exists in nature, where it provides superior ionizing radiation protection to organisms compared to known melanins. Here we introduce this novel selenium analogue of pheomelanin through chemical and biosynthetic routes using selenocystine as a feedstock. The resulting selenomelanin is a structural mimic of pheomelanin. We found selenomelanin effectively prevented neonatal human epidermal keratinocytes (NHEK) from G2/M phase arrest under high-dose X-ray irradiation. Provocatively, this beneficial role of selenomelanin points to it as a sixth variety of yet to be discovered natural melanin.


Assuntos
Melaninas/química , Compostos Organosselênicos/química , Selênio/química , Humanos , Queratinócitos/efeitos dos fármacos , Melaninas/farmacologia , Estrutura Molecular , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/farmacologia , Tamanho da Partícula , Selênio/farmacologia , Propriedades de Superfície , Raios X
14.
J Exp Biol ; 223(Pt 18)2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32764026

RESUMO

The costs associated with the production and maintenance of colour patches is thought to maintain their honesty. Although considerable research on sexual selection has focused on structurally coloured plumage ornaments, the proximate mechanisms of their potential condition dependence, and thus their honesty, is rarely addressed, particularly in an experimental context. Blue tit (Cyanistes caeruleus) nestlings have ultraviolet (UV)-blue structurally coloured tail feathers, providing a unique opportunity for investigation of the causes of variation in their colour. Here, we examined the influence of early growing conditions on the reflectance and structural properties of UV-blue-coloured tail feathers of blue tit nestlings. We applied a two-stage brood size manipulation to determine which stage of development more strongly impacts the quality of tail feather colouration and microstructure. We used small-angle X-ray scattering (SAXS) and electron microscopy to characterise the nanoscale and microscale structure of tail feather barbs. Nestlings from the broods enlarged at a later stage of growth showed a sex-specific rectrix development delay, with males being more sensitive to this manipulation. Contrary to predictions, treatment affected neither the quality of the barbs' nanostructures nor the brightness and UV chroma of feathers. However, at the microscale, barbs' keratin characteristics were impaired in late-enlarged broods. Our results suggest that nanostructure quality, which determines the UV-blue colour in tail feathers, is not sensitive to early rearing conditions. Furthermore, availability of resources during feather growth seems to impact the quality of feather microstructure more than body condition, which is likely to be determined at an earlier stage of nestling growth.


Assuntos
Plumas , Nanoestruturas , Animais , Cor , Feminino , Masculino , Microscopia Eletrônica , Pigmentação , Espalhamento a Baixo Ângulo , Difração de Raios X , Raios X
15.
16.
Nature ; 507(7492): 350-3, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24522537

RESUMO

Inference of colour patterning in extinct dinosaurs has been based on the relationship between the morphology of melanin-containing organelles (melanosomes) and colour in extant bird feathers. When this relationship evolved relative to the origin of feathers and other novel integumentary structures, such as hair and filamentous body covering in extinct archosaurs, has not been evaluated. Here we sample melanosomes from the integument of 181 extant amniote taxa and 13 lizard, turtle, dinosaur and pterosaur fossils from the Upper-Jurassic and Lower-Cretaceous of China. We find that in the lineage leading to birds, the observed increase in the diversity of melanosome morphologies appears abruptly, near the origin of pinnate feathers in maniraptoran dinosaurs. Similarly, mammals show an increased diversity of melanosome form compared to all ectothermic amniotes. In these two clades, mammals and maniraptoran dinosaurs including birds, melanosome form and colour are linked and colour reconstruction may be possible. By contrast, melanosomes in lizard, turtle and crocodilian skin, as well as the archosaurian filamentous body coverings (dinosaur 'protofeathers' and pterosaur 'pycnofibres'), show a limited diversity of form that is uncorrelated with colour in extant taxa. These patterns may be explained by convergent changes in the key melanocortin system of mammals and birds, which is known to affect pleiotropically both melanin-based colouration and energetic processes such as metabolic rate in vertebrates, and may therefore support a significant physiological shift in maniraptoran dinosaurs.


Assuntos
Evolução Biológica , Dinossauros/fisiologia , Plumas , Melanossomas/fisiologia , Pigmentação , Jacarés e Crocodilos/anatomia & histologia , Animais , Aves/anatomia & histologia , China , Extinção Biológica , Plumas/citologia , Fósseis , Cor de Cabelo , Tegumento Comum/anatomia & histologia , Tegumento Comum/fisiologia , Lagartos/anatomia & histologia , Mamíferos/anatomia & histologia , Melaninas/metabolismo , Melanossomas/ultraestrutura , Pigmentação da Pele , Tartarugas/anatomia & histologia
17.
Nature ; 506(7489): 484-8, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24402224

RESUMO

Throughout the animal kingdom, adaptive colouration serves critical functions ranging from inconspicuous camouflage to ostentatious sexual display, and can provide important information about the environment and biology of a particular organism. The most ubiquitous and abundant pigment, melanin, also has a diverse range of non-visual roles, including thermoregulation in ectotherms. However, little is known about the functional evolution of this important biochrome through deep time, owing to our limited ability to unambiguously identify traces of it in the fossil record. Here we present direct chemical evidence of pigmentation in fossilized skin, from three distantly related marine reptiles: a leatherback turtle, a mosasaur and an ichthyosaur. We demonstrate that dark traces of soft tissue in these fossils are dominated by molecularly preserved eumelanin, in intimate association with fossilized melanosomes. In addition, we suggest that contrary to the countershading of many pelagic animals, at least some ichthyosaurs were uniformly dark-coloured in life. Our analyses expand current knowledge of pigmentation in fossil integument beyond that of feathers, allowing for the reconstruction of colour over much greater ranges of extinct taxa and anatomy. In turn, our results provide evidence of convergent melanism in three disparate lineages of secondarily aquatic tetrapods. Based on extant marine analogues, we propose that the benefits of thermoregulation and/or crypsis are likely to have contributed to this melanisation, with the former having implications for the ability of each group to exploit cold environments.


Assuntos
Organismos Aquáticos/fisiologia , Evolução Biológica , Extinção Biológica , Fósseis , Melanose/metabolismo , Répteis/fisiologia , Pigmentação da Pele , Animais , Regulação da Temperatura Corporal , Cor , Melaninas/análise , Melanossomas/química , Filogenia , Pele/química , Tartarugas/fisiologia
18.
Biomacromolecules ; 20(12): 4593-4601, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31696706

RESUMO

Eumelanin is a ubiquitous natural pigment that has a broad absorption across ultraviolet (UV, 100-400 nm) and visible wavelengths (400-700 nm) and can protect against radiation. Synthetic eumelanin with properties similar to natural eumelanin has been made using dopamine or dihydroxyindole. Here, we use solid-state nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy to elucidate the chemical structure of synthetic eumelanins (made from dopamine and l-3,4-dihydroxyphenylalanine precursors) and investigate how their structures change after intensive UVA (315-400 nm) exposure. We first confirm that polydopamine has indole units. Upon UV exposure, the pyrrole ring in this indole unit remains intact, and a fraction of the six-membered benzyl ring is broken and the indole potentially converted to furo[3,4-b]pyrrole. This change in the chemical structure is accompanied by a release of carbon dioxide. In addition, the sepia (natural) eumelanin used for comparison is more stable than the synthetic eumelanin. Understanding the UVA degradation mechanism of eumelanin will help reveal the role of eumelanin in skin cancer and in the design of more efficient UV stabilizers.


Assuntos
Melaninas/química , Processos Fotoquímicos , Raios Ultravioleta , Animais , Humanos , Melaninas/metabolismo , Neoplasias Cutâneas/metabolismo
19.
Naturwissenschaften ; 105(3-4): 18, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29445955

RESUMO

White colouration is a common and important component of animal visual signalling and camouflage, but how and why it varies across species is poorly understood. White is produced by wavelength-independent and diffuse scattering of light by the internal structures of materials, where the degree of brightness is related to the amount of light scattered. Here, we investigated the morphological basis of brightness differences among unpigmented pennaceous regions of white body feathers across 61 bird species. Using phylogenetically controlled comparisons of reflectance and morphometric measurements, we show that brighter white feathers had larger and internally more complex barbs than duller white feathers. Higher brightness was also associated with more closely packed barbs and barbules, thicker and longer barbules, and rounder and less hollow barbs. Larger species tended to have brighter white feathers than smaller species because they had thicker and more complex barbs, but aquatic species were not significantly brighter than terrestrial species. As similar light scattering principals affect the brightness of chromatic signals, not just white colours, these findings help broaden our general understanding of the mechanisms that affect plumage brightness. Future studies should examine how feather layering on a bird's body contributes to differences between brightness of white plumage patches within and across species.


Assuntos
Aves/anatomia & histologia , Aves/classificação , Plumas/anatomia & histologia , Pigmentação/fisiologia , Animais , Tamanho Corporal , Especificidade da Espécie
20.
Proc Biol Sci ; 284(1848)2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28179521

RESUMO

Accurate recognition of salient cues is critical for adaptive responses, but the underlying sensory and cognitive processes are often poorly understood. For example, hosts of avian brood parasites have long been assumed to reject foreign eggs from their nests based on the total degree of dissimilarity in colour to their own eggs, regardless of the foreign eggs' colours. We tested hosts' responses to gradients of natural (blue-green to brown) and artificial (green to purple) egg colours, and demonstrate that hosts base rejection decisions on both the direction and degree of colour dissimilarity along the natural, but not artificial, gradient of egg colours. Hosts rejected brown eggs and accepted blue-green eggs along the natural egg colour gradient, irrespective of the total perceived dissimilarity from their own egg's colour. By contrast, their responses did not vary along the artificial colour gradient. Our results demonstrate that egg recognition is specifically tuned to the natural gradient of avian eggshell colour and suggest a novel decision rule. These results highlight the importance of considering sensory reception and decision rules when studying perception, and illustrate that our understanding of recognition processes benefits from examining natural variation in phenotypes.


Assuntos
Aves , Cor , Casca de Ovo , Comportamento de Nidação , Animais , Óvulo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA