Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 37(3): 321-336, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29311115

RESUMO

In the current model of mitochondrial trafficking, Miro1 and Miro2 Rho-GTPases regulate mitochondrial transport along microtubules by linking mitochondria to kinesin and dynein motors. By generating Miro1/2 double-knockout mouse embryos and single- and double-knockout embryonic fibroblasts, we demonstrate the essential and non-redundant roles of Miro proteins for embryonic development and subcellular mitochondrial distribution. Unexpectedly, the TRAK1 and TRAK2 motor protein adaptors can still localise to the outer mitochondrial membrane to drive anterograde mitochondrial motility in Miro1/2 double-knockout cells. In contrast, we show that TRAK2-mediated retrograde mitochondrial transport is Miro1-dependent. Interestingly, we find that Miro is critical for recruiting and stabilising the mitochondrial myosin Myo19 on the mitochondria for coupling mitochondria to the actin cytoskeleton. Moreover, Miro depletion during PINK1/Parkin-dependent mitophagy can also drive a loss of mitochondrial Myo19 upon mitochondrial damage. Finally, aberrant positioning of mitochondria in Miro1/2 double-knockout cells leads to disruption of correct mitochondrial segregation during mitosis. Thus, Miro proteins can fine-tune actin- and tubulin-dependent mitochondrial motility and positioning, to regulate key cellular functions such as cell proliferation.


Assuntos
Dineínas/metabolismo , Cinesinas/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Miosinas/metabolismo , Proteínas rho de Ligação ao GTP/genética , Actinas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Animais , Transporte Biológico , Proteínas de Transporte/metabolismo , Linhagem Celular Transformada , Proliferação de Células/genética , Desenvolvimento Embrionário/genética , Camundongos , Camundongos Knockout , Microtúbulos/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
J Neurosci ; 35(48): 15996-6011, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26631479

RESUMO

It is fast emerging that maintaining mitochondrial function is important for regulating astrocyte function, although the specific mechanisms that govern astrocyte mitochondrial trafficking and positioning remain poorly understood. The mitochondrial Rho-GTPase 1 protein (Miro1) regulates mitochondrial trafficking and detachment from the microtubule transport network to control activity-dependent mitochondrial positioning in neurons. However, whether Miro proteins are important for regulating signaling-dependent mitochondrial dynamics in astrocytic processes remains unclear. Using live-cell confocal microscopy of rat organotypic hippocampal slices, we find that enhancing neuronal activity induces transient mitochondrial remodeling in astrocytes, with a concomitant, transient reduction in mitochondrial trafficking, mediated by elevations in intracellular Ca(2+). Stimulating neuronal activity also induced mitochondrial confinement within astrocytic processes in close proximity to synapses. Furthermore, we show that the Ca(2+)-sensing EF-hand domains of Miro1 are important for regulating mitochondrial trafficking in astrocytes and required for activity-driven mitochondrial confinement near synapses. Additionally, activity-dependent mitochondrial positioning by Miro1 reciprocally regulates the levels of intracellular Ca(2+) in astrocytic processes. Thus, the regulation of intracellular Ca(2+) signaling, dependent on Miro1-mediated mitochondrial positioning, could have important consequences for astrocyte Ca(2+) wave propagation, gliotransmission, and ultimately neuronal function.


Assuntos
Astrócitos/ultraestrutura , Sinalização do Cálcio/fisiologia , Espaço Intracelular/metabolismo , Mitocôndrias/fisiologia , Proteínas Mitocondriais/metabolismo , Sinapses/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Dependovirus/genética , Embrião de Mamíferos , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Ácido Glutâmico/farmacologia , Hipocampo/citologia , Técnicas In Vitro , Espaço Intracelular/genética , Masculino , Proteínas Mitocondriais/genética , Neurônios/fisiologia , Técnicas de Cultura de Órgãos , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Ratos , Ratos Sprague-Dawley , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteínas rho de Ligação ao GTP/genética
3.
Glia ; 64(7): 1252-64, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27189737

RESUMO

The astrocytic GLT-1 (or EAAT2) is the major glutamate transporter for clearing synaptic glutamate. While the diffusion dynamics of neurotransmitter receptors at the neuronal surface are well understood, far less is known regarding the surface trafficking of transporters in subcellular domains of the astrocyte membrane. Here, we have used live-cell imaging to study the mechanisms regulating GLT-1 surface diffusion in astrocytes in dissociated and brain slice cultures. Using GFP-time lapse imaging, we show that GLT-1 forms stable clusters that are dispersed rapidly and reversibly upon glutamate treatment in a transporter activity-dependent manner. Fluorescence recovery after photobleaching and single particle tracking using quantum dots revealed that clustered GLT-1 is more stable than diffuse GLT-1 and that glutamate increases GLT-1 surface diffusion in the astrocyte membrane. Interestingly, the two main GLT-1 isoforms expressed in the brain, GLT-1a and GLT-1b, are both found to be stabilized opposed to synapses under basal conditions, with GLT-1b more so. GLT-1 surface mobility is increased in proximity to activated synapses and alterations of neuronal activity can bidirectionally modulate the dynamics of both GLT-1 isoforms. Altogether, these data reveal that astrocytic GLT-1 surface mobility, via its transport activity, is modulated during neuronal firing, which may be a key process for shaping glutamate clearance and glutamatergic synaptic transmission. GLIA 2016;64:1252-1264.


Assuntos
Astrócitos/fisiologia , Transporte Biológico/fisiologia , Córtex Cerebral/citologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Neurônios/fisiologia , 4-Aminopiridina/farmacologia , Anestésicos Locais/farmacologia , Animais , Animais Recém-Nascidos , Ácido Aspártico/análogos & derivados , Ácido Aspártico/farmacologia , Astrócitos/efeitos dos fármacos , Transporte Biológico/genética , Células Cultivadas , Técnicas de Cocultura , Embrião de Mamíferos , Transportador 2 de Aminoácido Excitatório/genética , Ácido Glutâmico/farmacologia , Hipocampo/citologia , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Transgênicos , Tetrodotoxina/farmacologia
4.
J Neurosci ; 32(7): 2485-98, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22396422

RESUMO

The strength of synaptic inhibition can be controlled by the stability and endocytosis of surface and synaptic GABA(A) receptors (GABA(A)Rs), but the surface receptor dynamics that underpin GABA(A)R recruitment to dendritic endocytic zones (EZs) have not been investigated. Stabilization of GABA(A)Rs at EZs is likely to be regulated by receptor interactions with the clathrin-adaptor AP2, but the molecular determinants of these associations remain poorly understood. Moreover, although surface GABA(A)R downmodulation plays a key role in pathological disinhibition in conditions such as ischemia and epilepsy, whether this occurs in an AP2-dependent manner also remains unclear. Here we report the characterization of a novel motif containing three arginine residues (405RRR407) within the GABA(A)R ß3-subunit intracellular domain (ICD), responsible for the interaction with AP2 and GABA(A)R internalization. When this motif is disrupted, binding to AP2 is abolished in vitro and in rat brain. Using single-particle tracking, we reveal that surface ß3-subunit-containing GABA(A)Rs exhibit highly confined behavior at EZs, which is dependent on AP2 interactions via this motif. Reduced stabilization of mutant GABA(A)Rs at EZs correlates with their reduced endocytosis and increased steady-state levels at synapses. By imaging wild-type or mutant super-ecliptic pHluorin-tagged GABA(A)Rs in neurons, we also show that, under conditions of oxygen-glucose deprivation to mimic cerebral ischemia, GABA(A)Rs are depleted from synapses in dendrites, depending on the 405RRR407 motif. Thus, AP2 binding to an RRR motif in the GABA(A)R ß3-subunit ICD regulates GABA(A)R residency time at EZs, steady-state synaptic receptor levels, and pathological loss of GABA(A)Rs from synapses during simulated ischemia.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Endocitose/genética , Subunidades Proteicas/metabolismo , Receptores de GABA-A/metabolismo , Complexo 2 de Proteínas Adaptadoras/genética , Motivos de Aminoácidos/genética , Animais , Células Cultivadas , Feminino , Masculino , Ligação Proteica/genética , Estabilidade Proteica , Subunidades Proteicas/genética , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/deficiência , Receptores de GABA-A/genética
5.
Cell Rep ; 21(1): 70-83, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28978485

RESUMO

Inhibitory synaptic transmission requires the targeting and stabilization of GABAA receptors (GABAARs) at synapses. The mechanisms responsible remain poorly understood, and roles for transmembrane accessory proteins have not been established. Using molecular, imaging, and electrophysiological approaches, we identify the tetraspanin LHFPL4 as a critical regulator of postsynaptic GABAAR clustering in hippocampal pyramidal neurons. LHFPL4 interacts tightly with GABAAR subunits and is selectively enriched at inhibitory synapses. In LHFPL4 knockout mice, there is a dramatic cell-type-specific reduction in GABAAR and gephyrin clusters and an accumulation of large intracellular gephyrin aggregates in vivo. While GABAARs are still trafficked to the neuronal surface in pyramidal neurons, they are no longer localized at synapses, resulting in a profound loss of fast inhibitory postsynaptic currents. Hippocampal interneuron currents remain unaffected. Our results establish LHFPL4 as a synapse-specific tetraspanin essential for inhibitory synapse function and provide fresh insights into the molecular make-up of inhibitory synapses.


Assuntos
Proteínas de Transporte/genética , Potenciais Pós-Sinápticos Inibidores/fisiologia , Proteínas de Membrana/genética , Subunidades Proteicas/genética , Receptores de GABA-A/genética , Sinapses/metabolismo , Tetraspaninas/genética , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Células COS , Proteínas de Transporte/metabolismo , Chlorocebus aethiops , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica , Interneurônios/citologia , Interneurônios/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Técnicas de Patch-Clamp , Agregados Proteicos , Subunidades Proteicas/metabolismo , Transporte Proteico , Células Piramidais/citologia , Células Piramidais/metabolismo , Ratos , Receptores de GABA-A/metabolismo , Tetraspaninas/metabolismo , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA