RESUMO
This review highlights studies from the past 3 years that add to the understanding of the impact of environmental exposures on allergic disease. These include aeroallergens, air quality, prenatal or early-life exposures, and occupational exposures. Recent studies have focused on the relationship between the environment, the microbiome, and allergic disease, and new therapeutic options have also been reviewed. Lastly, there has been significant recent research improving our knowledge of the link between health disparities and environmental exposures. These scientific advances have resulted in a better understanding that sets the foundation for current and future research dedicated to improving health outcomes by modifying environmental exposures.
Assuntos
Exposição Ambiental , Hipersensibilidade , Humanos , Exposição Ambiental/efeitos adversos , Hipersensibilidade/imunologia , Hipersensibilidade/epidemiologia , Alérgenos/imunologia , Microbiota/imunologia , Animais , Exposição Ocupacional/efeitos adversosRESUMO
BACKGROUND: Black and Hispanic children living in urban environments in the USA have an excess burden of morbidity and mortality from asthma. Therapies directed at the eosinophilic phenotype reduce asthma exacerbations in adults, but few data are available in children and diverse populations. Furthermore, the molecular mechanisms that underlie exacerbations either being prevented by, or persisting despite, immune-based therapies are not well understood. We aimed to determine whether mepolizumab, added to guidelines-based care, reduced the number of asthma exacerbations during a 52-week period compared with guidelines-based care alone. METHODS: This is a randomised, double-blind, placebo-controlled, parallel-group trial done at nine urban medical centres in the USA. Children and adolescents aged 6-17 years, who lived in socioeconomically disadvantaged neighbourhoods and had exacerbation-prone asthma (defined as ≥two exacerbations in the previous year) and blood eosinophils of at least 150 cells per µL were randomly assigned 1:1 to mepolizumab (6-11 years: 40 mg; 12-17 years: 100 mg) or placebo injections once every 4 weeks, plus guideline-based care, for 52 weeks. Randomisation was done using a validated automated system. Participants, investigators, and the research staff who collected outcome measures remained masked to group assignments. The primary outcome was the number of asthma exacerbations that were treated with systemic corticosteroids during 52 weeks in the intention-to-treat population. The mechanisms of treatment response were assessed by study investigators using nasal transcriptomic modular analysis. Safety was assessed in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, NCT03292588. FINDINGS: Between Nov 1, 2017, and Mar 12, 2020, we recruited 585 children and adolescents. We screened 390 individuals, of whom 335 met the inclusion criteria and were enrolled. 290 met the randomisation criteria, were randomly assigned to mepolizumab (n=146) or placebo (n=144), and were included in the intention-to-treat analysis. 248 completed the study. The mean number of asthma exacerbations within the 52-week study period was 0·96 (95% CI 0·78-1·17) with mepolizumab and 1·30 (1·08-1·57) with placebo (rate ratio 0·73; 0·56-0·96; p=0·027). Treatment-emergent adverse events occurred in 42 (29%) of 146 participants in the mepolizumab group versus 16 (11%) of 144 participants in the placebo group. No deaths were attributed to mepolizumab. INTERPRETATION: Phenotype-directed therapy with mepolizumab in urban children with exacerbation-prone eosinophilic asthma reduced the number of exacerbations. FUNDING: US National Institute of Allergy and Infectious Diseases and GlaxoSmithKline.
Assuntos
Asma , Eosinofilia Pulmonar , Anticorpos Monoclonais Humanizados , Asma/tratamento farmacológico , Humanos , Estados Unidos , População UrbanaRESUMO
OBJECTIVE: The School Inner-City Asthma Intervention Study 2 (SICAS 2) tested interventions to reduce exposures in classrooms of students with asthma. The objective of this post-hoc analysis was limited to evaluating the effect of high-efficiency particulate (HEPA) filtration interventions on mold levels as quantified using the Environmental Relative Moldiness Index (ERMI) and the possible improvement in the students' asthma, as quantified by spirometry testing. METHODS: Pre-intervention dust samples were collected at the beginning of the school year from classrooms and corresponding homes of students with asthma (n = 150). Follow-up dust samples were collected in the classrooms at the end of the HEPA or Sham intervention. For each dust sample, ERMI values and the Group 1 and Group 2 mold levels (components of the ERMI metric) were quantified. In addition, each student's lung function was evaluated by spirometry testing, specifically the percentage predicted forced expiratory volume at 1 sec (FEV1%), before and at the end of the intervention. RESULTS: For those students with a higher Group 1 mold level in their pre-intervention classroom than home (n = 94), the FEV1% results for those students was significantly (p < 0.05) inversely correlated with the Group 1 level in their classrooms. After the HEPA intervention, the average Group 1 and ERMI values were significantly lowered, and the average FEV1% test results significantly increased by an average of 4.22% for students in HEPA compared to Sham classrooms. CONCLUSIONS: HEPA intervention in classrooms reduced Group 1 and ERMI values, which corresponded to improvements in the students' FEV1% test results.
Assuntos
Poluição do Ar em Ambientes Fechados , Asma , Humanos , Asma/terapia , Habitação , Poeira/análise , Fungos , Espirometria , Poluição do Ar em Ambientes Fechados/prevenção & controle , Poluição do Ar em Ambientes Fechados/análiseRESUMO
BACKGROUND: Asthma exacerbations occur frequently despite the regular use of asthma-controller therapies, such as inhaled glucocorticoids. Clinicians commonly increase the doses of inhaled glucocorticoids at early signs of loss of asthma control. However, data on the safety and efficacy of this strategy in children are limited. METHODS: We studied 254 children, 5 to 11 years of age, who had mild-to-moderate persistent asthma and had had at least one asthma exacerbation treated with systemic glucocorticoids in the previous year. Children were treated for 48 weeks with maintenance low-dose inhaled glucocorticoids (fluticasone propionate at a dose of 44 µg per inhalation, two inhalations twice daily) and were randomly assigned to either continue the same dose (low-dose group) or use a quintupled dose (high-dose group; fluticasone at a dose of 220 µg per inhalation, two inhalations twice daily) for 7 days at the early signs of loss of asthma control ("yellow zone"). Treatment was provided in a double-blind fashion. The primary outcome was the rate of severe asthma exacerbations treated with systemic glucocorticoids. RESULTS: The rate of severe asthma exacerbations treated with systemic glucocorticoids did not differ significantly between groups (0.48 exacerbations per year in the high-dose group and 0.37 exacerbations per year in the low-dose group; relative rate, 1.3; 95% confidence interval, 0.8 to 2.1; P=0.30). The time to the first exacerbation, the rate of treatment failure, symptom scores, and albuterol use during yellow-zone episodes did not differ significantly between groups. The total glucocorticoid exposure was 16% higher in the high-dose group than in the low-dose group. The difference in linear growth between the high-dose group and the low-dose group was -0.23 cm per year (P=0.06). CONCLUSIONS: In children with mild-to-moderate persistent asthma treated with daily inhaled glucocorticoids, quintupling the dose at the early signs of loss of asthma control did not reduce the rate of severe asthma exacerbations or improve other asthma outcomes and may be associated with diminished linear growth. (Funded by the National Heart, Lung, and Blood Institute; STICS ClinicalTrials.gov number, NCT02066129 .).
Assuntos
Antiasmáticos/administração & dosagem , Asma/prevenção & controle , Fluticasona/administração & dosagem , Administração por Inalação , Albuterol/administração & dosagem , Antiasmáticos/efeitos adversos , Criança , Pré-Escolar , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Fluticasona/efeitos adversos , Crescimento/efeitos dos fármacos , Humanos , Masculino , Pico do Fluxo ExpiratórioRESUMO
BACKGROUND: Traffic proximity has been associated with adverse respiratory health outcomes. Less is known about the combined impact of residential and school exposures on pediatric asthma. OBJECTIVE: We sought to use spatial analysis methodology to analyze residential and school proximity to major roadways and pediatric asthma morbidity. METHODS: The School Inner-City Asthma Study (n = 350) recruited school-aged children with asthma. Each participant's school and home addresses were geocoded, and distances from major roadways were measured to calculate a composite measure accounting for both home and school traffic exposure. Generalized estimating equation models were clustered by subject and adjusted for age, race/ethnicity, sex, income, environmental tobacco smoke, controller medication, upper respiratory tract infections, and seasonality. RESULTS: The majority of participants (62%) attended schools within 100 m from major roadways, and 40% also resided within 100 m of major roadways. In multivariate analyses major roadway proximity was independently associated with increased asthma symptom days. At greater than the threshold of 100 m, children had 29% less odds of a symptom day over the past 2 weeks for each 100-m increase in distance from a major roadway (odds ratio, 0.71; 95% CI, 0.58-0.87; P < .01). Children farther from a major roadway also had significantly less reported health care use (odds ratio, 0.63; 95% CI, 0.47-0.85; P < .01) and were significantly less likely to have poor asthma control (odds ratio, 0.80; 95% CI, 0.69-0.94; P < .01). There was not a meaningful association between distance to a major roadway and lung function outcomes. CONCLUSIONS: Proximity to a major roadway, a composite measure of home and school exposure but primarily driven by home exposure, was associated with greater asthma morbidity. More studies are needed to evaluate the independent effect of school distance to a roadway on asthma morbidity.
Assuntos
Asma , Exposição Ambiental/efeitos adversos , Instituições Acadêmicas , Emissões de Veículos/toxicidade , Adolescente , Fatores Etários , Asma/epidemiologia , Asma/etiologia , Criança , Pré-Escolar , Cidades , Feminino , Humanos , Masculino , Estudos ProspectivosRESUMO
BACKGROUND: Sparse data address the effects of nitrogen dioxide (NO2) exposure in inner-city schools on obese students with asthma. OBJECTIVE: We sought to evaluate relationships between classroom NO2 exposure and asthma symptoms and morbidity by body mass index (BMI) category. METHODS: The School Inner-City Asthma Study enrolled students aged 4 to 13 years with asthma from 37 inner-city schools. Students had baseline determination of BMI percentile. Asthma symptoms, morbidity, pulmonary inflammation, and lung function were monitored throughout the subsequent academic year. Classroom NO2 data, linked to enrolled students, were collected twice per year. We determined the relationship between classroom NO2 levels and asthma outcomes by BMI stratification. RESULTS: A total of 271 predominantly black (35%) or Hispanic students (35%) were included in analyses. Fifty percent were normal weight (5-84th BMI percentile), 15% overweight (≥85-94th BMI percentile), and 35% obese (≥95th BMI percentile). For each 10-parts per billion increase in NO2, obese students had a significant increase in the odds of having an asthma symptom day (odds ratio [OR], 1.86; 95% CI, 1.15-3.02) and in days caregiver changed plans (OR, 4.24; 95% CI, 2.33-7.70), which was significantly different than normal weight students who exhibited no relationship between NO2 exposure and symptom days (OR, 0.90; 95% CI, 0.57-1.42; pairwise interaction P = .03) and change in caregiver plans (OR, 1.37; 95% CI, 0.67-2.82; pairwise interaction P = .02). Relationships between NO2 levels and lung function and fractional exhaled nitric oxide did not differ by BMI category. If we applied a conservative Holm-Bonferroni correction for 16 comparisons (obese vs normal weight and overweight vs normal weight for 8 outcomes), these findings would not meet statistical significance (all P > .003). CONCLUSIONS: Obese BMI status appears to increase susceptibility to classroom NO2 exposure effects on asthma symptoms in inner-city children. Environmental interventions targeting indoor school NO2 levels may improve asthma health for obese children. Although our findings would not remain statistically significant after adjustment for multiple comparisons, the large effect sizes warrant future study of the interaction of obesity and pollution in pediatric asthma.
Assuntos
Asma/epidemiologia , Asma/etiologia , Exposição Ambiental/efeitos adversos , Dióxido de Nitrogênio/efeitos adversos , Obesidade/complicações , Obesidade/epidemiologia , Adolescente , Poluição do Ar em Ambientes Fechados , Índice de Massa Corporal , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Morbidade , Prognóstico , Instituições Acadêmicas , População UrbanaRESUMO
Importance: School and classroom allergens and particles are associated with asthma morbidity, but the benefit of environmental remediation is not known. Objective: To determine whether use of a school-wide integrated pest management (IPM) program or high-efficiency particulate air (HEPA) filter purifiers in the classrooms improve asthma symptoms in students with active asthma. Design, Setting, and Participants: Factorial randomized clinical trial of a school-wide IPM program and HEPA filter purifiers in the classrooms was conducted from 2015 to 2020 (School Inner-City Asthma Intervention Study). There were 236 students with active asthma attending 41 participating urban elementary schools located in the Northeastern US who were randomized to IPM by school and HEPA filter purifiers by classroom. The date of final follow-up was June 20, 2020. Interventions: The school-wide IPM program consisted of application of rodenticide, sealing entry points, trap placement, targeted cleaning, and brief educational handouts for school staff. Infestation was assessed every 3 months, with additional treatments as needed. Control schools received no IPM, cleaning, or education. Classroom portable HEPA filter purifiers were deployed and the filters were changed every 3 months. Control classrooms received sham HEPA filters that looked and sounded like active HEPA filter purifiers. Randomization was done independently (split-plot design), with matching by the number of enrolled students to ensure a nearly exact 1:1 student ratio for each intervention with 118 students randomized to each group. Participants, investigators, and those assessing outcomes were blinded to the interventions. Main Outcomes and Measures: The primary outcome was the number of symptom-days with asthma during a 2-week period. Symptom-days were assessed every 2 months during the 10 months after randomization. Results: Among the 236 students who were randomized (mean age, 8.1 [SD, 2.0] years; 113 [48%] female), all completed the trial. At baseline, the 2-week mean was 2.2 (SD, 3.9) symptom-days with asthma and 98% of the classrooms had detectable levels of mouse allergen. The results were pooled because there was no statistically significant difference between the 2 interventions (P = .18 for interaction). During a 2-week period, the mean was 1.5 symptom-days with asthma after use of the school-wide IPM program vs 1.9 symptom-days after no IPM across the school year (incidence rate ratio, 0.71 [95% CI, 0.38-1.33]), which was not statistically significantly different. During a 2-week period, the mean was 1.6 symptom-days with asthma after use of HEPA filter purifiers in the classrooms vs 1.8 symptom-days after use of sham HEPA filter purifiers across the school year (incidence rate ratio, 1.47 [95% CI, 0.79-2.75]), which was not statistically significantly different. There were no intervention-related adverse events. Conclusions and Relevance: Among children with active asthma, use of a school-wide IPM program or classroom HEPA filter purifiers did not significantly reduce symptom-days with asthma. However, interpretation of the study findings may need to consider allergen levels, particle exposures, and asthma symptoms at baseline. Trial Registration: ClinicalTrials.gov Identifier: NCT02291302.
Assuntos
Filtros de Ar , Poluição do Ar em Ambientes Fechados/prevenção & controle , Asma/prevenção & controle , Exposição Ambiental/prevenção & controle , Controle de Roedores , Instituições Acadêmicas , Poluição do Ar em Ambientes Fechados/efeitos adversos , Alérgenos/análise , Criança , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Masculino , RodenticidasRESUMO
Weather and climate change are constant and ever-changing processes that affect allergy and asthma. The purpose of this report is to provide information since the last climate change review with a focus on asthmatic disease. PubMed and Internet searches for topics included climate and weather change, air pollution, particulates, greenhouse gasses, traffic, insect habitat, and mitigation in addition to references contributed by the individual authors. Changes in patterns of outdoor aeroallergens caused by increasing temperatures and amounts of carbon dioxide in the atmosphere are major factors linked to increased duration of pollen seasons, increased pollen production, and possibly increased allergenicity of pollen. Indoor air pollution threats anticipated from climate changes include microbial and mold growth secondary to flooding, resulting in displacement of persons and need for respiratory protection of exposed workers. Air pollution from indoor burning of mosquito repellants is a potential anticipatory result of an increase in habitat regions. Air pollution from fossil fuel burning and traffic-related emissions can alter respiratory defense mechanisms and work synergistically with specific allergens to enhance immunogenicity to worsen asthma in susceptible subjects. Community efforts can significantly reduce air pollution, thereby reducing greenhouse gas emission and improving air quality. The allergist's approach to weather pattern changes should be integrated and anticipatory to protect at-risk patients.
Assuntos
Poluição do Ar/estatística & dados numéricos , Asma/epidemiologia , Mudança Climática/estatística & dados numéricos , Exposição Ambiental/efeitos adversos , Hipersensibilidade/epidemiologia , Tempo (Meteorologia) , Poluentes Atmosféricos/imunologia , Poluição do Ar em Ambientes Fechados , Alérgenos/imunologia , Humanos , Risco , Estados Unidos/epidemiologiaRESUMO
BACKGROUND: Studies have suggested an association between frequent acetaminophen use and asthma-related complications among children, leading some physicians to recommend that acetaminophen be avoided in children with asthma; however, appropriately designed trials evaluating this association in children are lacking. METHODS: In a multicenter, prospective, randomized, double-blind, parallel-group trial, we enrolled 300 children (age range, 12 to 59 months) with mild persistent asthma and assigned them to receive either acetaminophen or ibuprofen when needed for the alleviation of fever or pain over the course of 48 weeks. The primary outcome was the number of asthma exacerbations that led to treatment with systemic glucocorticoids. Children in both groups received standardized asthma-controller therapies that were used in a simultaneous, factorially linked trial. RESULTS: Participants received a median of 5.5 doses (interquartile range, 1.0 to 15.0) of trial medication; there was no significant between-group difference in the median number of doses received (P=0.47). The number of asthma exacerbations did not differ significantly between the two groups, with a mean of 0.81 per participant with acetaminophen and 0.87 per participant with ibuprofen over 46 weeks of follow-up (relative rate of asthma exacerbations in the acetaminophen group vs. the ibuprofen group, 0.94; 95% confidence interval, 0.69 to 1.28; P=0.67). In the acetaminophen group, 49% of participants had at least one asthma exacerbation and 21% had at least two, as compared with 47% and 24%, respectively, in the ibuprofen group. Similarly, no significant differences were detected between acetaminophen and ibuprofen with respect to the percentage of asthma-control days (85.8% and 86.8%, respectively; P=0.50), use of an albuterol rescue inhaler (2.8 and 3.0 inhalations per week, respectively; P=0.69), unscheduled health care utilization for asthma (0.75 and 0.76 episodes per participant, respectively; P=0.94), or adverse events. CONCLUSIONS: Among young children with mild persistent asthma, as-needed use of acetaminophen was not shown to be associated with a higher incidence of asthma exacerbations or worse asthma control than was as-needed use of ibuprofen. (Funded by the National Institutes of Health; AVICA ClinicalTrials.gov number, NCT01606319.).
Assuntos
Acetaminofen/efeitos adversos , Asma/induzido quimicamente , Ibuprofeno/efeitos adversos , Acetaminofen/uso terapêutico , Asma/epidemiologia , Pré-Escolar , Método Duplo-Cego , Feminino , Febre/tratamento farmacológico , Humanos , Ibuprofeno/uso terapêutico , Incidência , Lactente , Estimativa de Kaplan-Meier , Masculino , Dor/tratamento farmacológico , Estudos ProspectivosRESUMO
BACKGROUND: Home fungus exposures may be associated with development or worsening of asthma. Little is known about the effects of school/classroom fungus exposures on asthma morbidity in students. OBJECTIVE: To evaluate the association of school-based fungus exposures on asthma symptoms in both fungus-sensitized and nonsensitized students with asthma. METHODS: In this prospective study, 280 children with asthma from 37 inner-city schools were phenotypically characterized at baseline and followed-up for 1 year. Fungal spores were collected by using a Burkard air sampler twice during the school year. Clinical outcomes were evaluated throughout the school year and linked to classroom-specific airborne spore sampling. The primary outcome was days with asthma symptoms per 2-week period. RESULTS: Fungal spores were present in all classroom samples. The geometric mean of the total fungi was 316.9 spores/m3 and ranged from 15.0 to 59,345.7 spores/m3. There was variability in total fungus quantity between schools and classrooms within the same school. Mitospores were the most commonly detected fungal grouping. Investigation of the individual mitospores revealed that exposure to Alternaria was significantly associated with asthma symptom days in students sensitized to Alternaria (OR = 3.61, CI = 1.34-9.76, P = .01), but not in children not sensitized to Alternaria (OR = 1.04, CI = 0.72-1.49, P = .85). Students sensitized to Alternaria and exposed to high levels (≥75th percentile exposure) had 3.2 more symptom days per 2-week period as compared with students sensitized but exposed to lower levels. CONCLUSION: Children with asthma who are sensitized to Alternaria and exposed to this fungus in their classroom may have significantly more days with asthma symptoms than those who were sensitized and not exposed. CLINICAL TRIAL REGISTRATION: Clinicaltrials.govNCT01756391.
Assuntos
Alérgenos/imunologia , Alternaria/imunologia , Asma/imunologia , Exposição Ambiental/estatística & dados numéricos , Hipersensibilidade/epidemiologia , Esporos Fúngicos/imunologia , População Urbana , Microbiologia do Ar , Poluição do Ar em Ambientes Fechados , Asma/epidemiologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Estudos Prospectivos , Instituições Acadêmicas , Estados Unidos/epidemiologiaRESUMO
BACKGROUND: Ambient and home exposure to nitrogen dioxide (NO2) causes asthma symptoms and decreased lung function in children with asthma. Little is known about the health effects of school classroom pollution exposure. OBJECTIVE: We aimed to determine the effect of indoor classroom NO2 on lung function and symptoms in inner-city school children with asthma. METHODS: Children enrolled in the School Inner-City Asthma Study were followed for 1 academic year. Subjects performed spirometry and had fraction of exhaled nitric oxide values measured twice during the school year at school. Classroom NO2 was collected by means of passive sampling for 1-week periods twice per year, coinciding with lung function testing. Generalized estimating equation models assessed lung function and symptom relationships with the temporally nearest classroom NO2 level. RESULTS: The mean NO2 value was 11.1 ppb (range, 4.3-29.7 ppb). In total, exposure data were available for 296 subjects, 188 of whom had complete spirometric data. At greater than a threshold of 8 ppb of NO2 and after adjusting for race and season (spirometry standardized by age, height, and sex), NO2 levels were associated highly with airflow obstruction, such that each 10-ppb increase in NO2 level was associated with a 5% decrease in FEV1/forced vital capacity ratio (ß = -0.05; 95% CI, -0.08 to -0.02; P = .01). Percent predicted forced expiratory flow between the 25th and 75th percentile of forced vital capacity was also inversely associated with higher NO2 exposure (ß = -22.8; 95% CI, -36.0 to -9.7; P = .01). There was no significant association of NO2 levels with percent predicted FEV1, fraction of exhaled nitric oxide, or asthma symptoms. Additionally, there was no effect modification of atopy on lung function or symptom outcomes. CONCLUSION: In children with asthma, indoor classroom NO2 levels can be associated with increased airflow obstruction.
Assuntos
Poluição do Ar em Ambientes Fechados/análise , Asma , Dióxido de Nitrogênio/análise , Oxidantes Fotoquímicos/análise , Instituições Acadêmicas , Adolescente , Poluição do Ar em Ambientes Fechados/efeitos adversos , Criança , Pré-Escolar , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Masculino , Dióxido de Nitrogênio/efeitos adversos , Oxidantes Fotoquímicos/efeitos adversos , Testes de Função Respiratória , População UrbanaRESUMO
In this review we highlight recent studies that advance the knowledge and understanding of the effects of various environmental factors and associated immune responses in patients with allergic diseases. This review will focus on new literature regarding allergic and immune responses to a variety of environmental factors, including aeroallergens, stinging insects, fungi, pollutants, viral respiratory tract infections, climate change, and microbial exposures.
Assuntos
Infecções Bacterianas/imunologia , Hipersensibilidade/imunologia , Imunidade , Mordeduras e Picadas de Insetos/imunologia , Micoses/imunologia , Doenças Profissionais/imunologia , Viroses/imunologia , Poluentes Atmosféricos/imunologia , Alérgenos/imunologia , Animais , Antígenos de Bactérias/imunologia , Antígenos de Fungos/imunologia , Antígenos Virais/imunologia , Mudança Climática , Exposição Ambiental/efeitos adversos , Humanos , Peçonhas/imunologiaRESUMO
BACKGROUND: Children with food allergies spend a large proportion of time in school but characteristics of allergic reactions in schools are not well studied. Some schools self-designate as peanut-free or have peanut-free areas, but the impact of policies on clinical outcomes has not been evaluated. OBJECTIVE: We sought to determine the effect of peanut-free policies on rates of epinephrine administration for allergic reactions in Massachusetts public schools. METHODS: In this retrospective study, we analyzed (1) rates of epinephrine administration in all Massachusetts public schools and (2) Massachusetts public school nurse survey reports of school peanut-free policies from 2006 to 2011 and whether schools self-designated as "peanut-free" based on policies. Rates of epinephrine administration were compared for schools with or without peanut-restrictive policies. RESULTS: The percentage of schools with peanut-restrictive policies did not change significantly in the study time frame. There was variability in policies used by schools self-designated as peanut-free. No policy was associated with complete absence of allergic reactions. Both self-designated peanut-free schools and schools banning peanuts from being served in school or brought from home reported allergic reactions to nuts. Policies restricting peanuts from home, served in schools, or having peanut-free classrooms did not affect epinephrine administration rates. Schools with peanut-free tables, compared to without, had lower rates of epinephrine administration (incidence rate per 10,000 students 0.2 and 0.6, respectively, P = .009). CONCLUSIONS: These data provide a basis for evidence-based school policies for children with food allergies. Further studies are required before decisions can be made regarding peanut-free policies in schools.
Assuntos
Anafilaxia/prevenção & controle , Arachis , Broncodilatadores/uso terapêutico , Epinefrina/uso terapêutico , Hipersensibilidade Alimentar/tratamento farmacológico , Políticas , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Massachusetts , Serviços de Saúde Escolar/organização & administração , Instituições AcadêmicasRESUMO
BACKGROUND: Phenotypic presentations in young children with asthma are varied and might contribute to differential responses to asthma controller medications. METHODS: The Individualized Therapy for Asthma in Toddlers study was a multicenter, randomized, double-blind, double-dummy clinical trial in children aged 12 to 59 months (n = 300) with asthma necessitating treatment with daily controller (Step 2) therapy. Participants completed a 2- to 8-week run-in period followed by 3 crossover periods with daily inhaled corticosteroids (ICSs), daily leukotriene receptor antagonists, and as-needed ICS treatment coadministered with albuterol. The primary outcome was differential response to asthma medication based on a composite measure of asthma control. The primary analysis involved 2 stages: determination of differential response and assessment of whether 3 prespecified features (aeroallergen sensitization, previous exacerbations, and sex) predicted a differential response. RESULTS: Seventy-four percent (170/230) of children with analyzable data had a differential response to the 3 treatment strategies. Within differential responders, the probability of best response was highest for a daily ICS and was predicted by aeroallergen sensitization but not exacerbation history or sex. The probability of best response to daily ICS was further increased in children with both aeroallergen sensitization and blood eosinophil counts of 300/µL or greater. In these children daily ICS use was associated with more asthma control days and fewer exacerbations compared with the other treatments. CONCLUSIONS: In young children with asthma necessitating Step 2 treatment, phenotyping with aeroallergen sensitization and blood eosinophil counts is useful for guiding treatment selection and identifies children with a high exacerbation probability for whom treatment with a daily ICS is beneficial despite possible risks of growth suppression.
Assuntos
Corticosteroides/uso terapêutico , Asma/tratamento farmacológico , Antagonistas de Leucotrienos/uso terapêutico , Administração por Inalação , Albuterol/uso terapêutico , Pré-Escolar , Feminino , Seguimentos , Humanos , Lactente , Masculino , Medicina de Precisão , Recidiva , Resultado do Tratamento , Estados UnidosRESUMO
PURPOSE OF REVIEW: The aim of the present review is to discuss updates on research regarding the relationship between indoor allergen exposure and childhood asthma with a focus on clinical effects, locations of exposure, and novel treatments. RECENT FINDINGS: Recent data continue to demonstrate that early life sensitization to indoor allergens is a predictor of asthma development later in life. Furthermore, avoidance of exposure to these allergens continues to be important especially given that the vast majority of children with asthma are sensitized to at least one indoor allergen. New research suggests that mouse allergen, more so than cockroach allergen, may be the most relevant urban allergen. Recent evidence reminds us that children are exposed to clinically important levels of indoor allergens in locations away from their home, such as schools and daycare centers. Exposure to increased levels of indoor mold in childhood has been associated with asthma development and exacerbation of current asthma; however, emerging evidence suggests that early exposure to higher fungal diversity may actually be protective for asthma development. Novel treatments have been developed that target TH2 pathways thus decreasing asthmatic responses to allergens. These therapies show promise for the treatment of severe allergic asthma refractory to avoidance strategies and standard therapies. SUMMARY: Understanding the relationship between indoor allergens and asthma outcomes is a constantly evolving study of timing, location, and amount of exposure.
Assuntos
Microbiologia do Ar , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Alérgenos/efeitos adversos , Asma/etiologia , Exposição Ambiental/efeitos adversos , Poluentes Atmosféricos/imunologia , Alérgenos/imunologia , Asma/imunologia , Asma/terapia , Criança , Humanos , Saúde da População UrbanaAssuntos
Asma , Sons Respiratórios , Administração por Inalação , Corticosteroides , Pré-Escolar , HumanosRESUMO
IMPORTANCE: Many preschool children develop recurrent, severe episodes of lower respiratory tract illness (LRTI). Although viral infections are often present, bacteria may also contribute to illness pathogenesis. Strategies that effectively attenuate such episodes are needed. OBJECTIVE: To evaluate if early administration of azithromycin, started prior to the onset of severe LRTI symptoms, in preschool children with recurrent severe LRTIs can prevent the progression of these episodes. DESIGN, SETTING, AND PARTICIPANTS: A randomized, double-blind, placebo-controlled, parallel-group trial conducted across 9 academic US medical centers in the National Heart, Lung, and Blood Institute's AsthmaNet network, with enrollment starting in April 2011 and follow-up complete by December 2014. Participants were 607 children aged 12 through 71 months with histories of recurrent, severe LRTIs and minimal day-to-day impairment. INTERVENTION: Participants were randomly assigned to receive azithromycin (12 mg/kg/d for 5 days; n = 307) or matching placebo (n = 300), started early during each predefined RTI (child's signs or symptoms prior to development of LRTI), based on individualized action plans, over a 12- through 18-month period. MAIN OUTCOMES AND MEASURES: The primary outcome measure was the number of RTIs not progressing to a severe LRTI, measured at the level of the RTI, that would in clinical practice trigger the prescription of oral corticosteroids. Presence of azithromycin-resistant organisms in oropharyngeal samples, along with adverse events, were among the secondary outcome measures. RESULTS: A total of 937 treated RTIs (azithromycin group, 473; placebo group, 464) were experienced by 443 children (azithromycin group, 223; placebo group, 220), including 92 severe LRTIs (azithromycin group, 35; placebo group, 57). Azithromycin significantly reduced the risk of progressing to severe LRTI relative to placebo (hazard ratio, 0.64 [95% CI, 0.41-0.98], P = .04; absolute risk for first RTI: 0.05 for azithromycin, 0.08 for placebo; risk difference, 0.03 [95% CI, 0.00-0.06]). Induction of azithromycin-resistant organisms and adverse events were infrequently observed. CONCLUSIONS AND RELEVANCE: Among young children with histories of recurrent severe LRTIs, the use of azithromycin early during an apparent RTI compared with placebo reduced the likelihood of severe LRTI. More information is needed on the development of antibiotic-resistant pathogens with this strategy. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01272635.