Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38139584

RESUMO

In action recognition, obtaining skeleton data from human poses is valuable. This process can help eliminate negative effects of environmental noise, including changes in background and lighting conditions. Although GCN can learn unique action features, it fails to fully utilize the prior knowledge of human body structure and the coordination relations between limbs. To address these issues, this paper proposes a Multi-level Topological Channel Attention Network algorithm: Firstly, the Multi-level Topology and Channel Attention Module incorporates prior knowledge of human body structure using a coarse-to-fine approach, effectively extracting action features. Secondly, the Coordination Module utilizes contralateral and ipsilateral coordinated movements in human kinematics. Lastly, the Multi-scale Global Spatio-temporal Attention Module captures spatiotemporal features of different granularities and incorporates a causal convolution block and masked temporal attention to prevent non-causal relationships. This method achieved accuracy rates of 91.9% (Xsub), 96.3% (Xview), 88.5% (Xsub), and 90.3% (Xset) on NTU-RGB+D 60 and NTU-RGB+D 120, respectively.


Assuntos
Algoritmos , Extremidades , Humanos , Conhecimento , Aprendizagem , Esqueleto
2.
Langmuir ; 37(50): 14713-14723, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34873907

RESUMO

Rheological properties are critical for determining real applications of supramolecular gels in various fields. Correspondingly, the modulation of gel rheology will be very important for meeting real requirements. In this aspect, a few strategies were applied to tune the rheological behaviors of supramolecular gels, but some specific interactions like charge transfer (CT) interactions were less explored at the molecular level. Herein, we report a pyrene-containing derivative of diphenylalanine as a donor gelator and naphthalenediimide or 3,5-dinitrobenzene as matching acceptor molecules. It was found that the viscoelastic properties and strength of the original gel could be tuned through addition of different acceptor molecules to the original gel with changing the ratios of the selected acceptor molecules. As a result, storage modulus was continuously adjusted over a wide range from 190,000 to 50,000 Pa by CT interactions. Furthermore, the mechanism of the CT-induced change in rheological properties was understood and clarified through relevant techniques (e.g., UV-Vis, fluorescence, and FT-IR spectroscopy and TEM). The findings in this work would provide a novel strategy to modulate the rheological properties of supramolecular gels for adaption to broader fields of real applications.

3.
Adv Sci (Weinh) ; 9(30): e2203662, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36054543

RESUMO

2D organic molecular crystals (2DOMCs) are promising materials for the fabrication of high-performance optoelectronic devices. However, the growth of organic molecules into 2DOMCs remains a challenge because of the difficulties in controlling their self-assembly with a preferential orientation in solution-process crystallization. Herein, fullerene is chosen as a model molecule to develop a supramolecular gel crystallization approach to grow large-area 2DOMCs by controlling the perfect arrangement on the {220} crystal plane with the assistance of a gelated solvent. In this case, the gel networks provide tuneable confined spaces to control the crystallization kinetics toward the growth of dominant crystal faces by their inhibiting motions of solvent or solute molecules to enable the growth of perfect crystals at appropriate nucleation rates. As a result, a large-area fullerene 2DOMC is produced successfully and its corresponding device on a flexible substrate exhibits excellent bendable properties and ultra-high weak light detection ability (2.9 × 1011 Jones) at a 10 V bias upon irradiation with 450 nm incident light. Moreover, its photoelectric properties remain unchanged after 200 cycles of bending at angles of 45, 90, and 180°. These results can be extended to the growth of other 2DOMCs for potentially fabricating advanced organic (opto)electronics.


Assuntos
Fulerenos , Cristalização/métodos , Eletrônica , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA