Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 39(18): e105246, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32974937

RESUMO

Tetraspanins, including CD53 and CD81, regulate a multitude of cellular processes through organizing an interaction network on cell membranes. Here, we report the crystal structure of CD53 in an open conformation poised for partner interaction. The large extracellular domain (EC2) of CD53 protrudes away from the membrane surface and exposes a variable region, which is identified by hydrogen-deuterium exchange as the common interface for CD53 and CD81 to bind partners. The EC2 orientation in CD53 is supported by an extracellular loop (EC1). At the closed conformation of CD81, however, EC2 disengages from EC1 and rotates toward the membrane, thereby preventing partner interaction. Structural simulation shows that EC1-EC2 interaction also supports the open conformation of CD81. Disrupting this interaction in CD81 impairs the accurate glycosylation of its CD19 partner, the target for leukemia immunotherapies. Moreover, EC1 mutations in CD53 prevent the chemotaxis of pre-B cells toward a chemokine that supports B-cell trafficking and homing within the bone marrow, a major CD53 function identified here. Overall, an open conformation is required for tetraspanin-partner interactions to support myriad cellular processes.


Assuntos
Movimento Celular , Células Precursoras de Linfócitos B/metabolismo , Tetraspanina 25 , Tetraspanina 28 , Animais , Antígenos CD19/química , Antígenos CD19/genética , Antígenos CD19/metabolismo , Humanos , Camundongos , Camundongos Knockout , Domínios Proteicos , Tetraspanina 25/química , Tetraspanina 25/genética , Tetraspanina 25/metabolismo , Tetraspanina 28/química , Tetraspanina 28/genética , Tetraspanina 28/metabolismo
2.
J Biol Chem ; 296: 100145, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33273012

RESUMO

Vitamin K epoxide reductases (VKORs) constitute a major family of integral membrane thiol oxidoreductases. In humans, VKOR sustains blood coagulation and bone mineralization through the vitamin K cycle. Previous chemical models assumed that the catalysis of human VKOR (hVKOR) starts from a fully reduced active site. This state, however, constitutes only a minor cellular fraction (5.6%). Thus, the mechanism whereby hVKOR catalysis is carried out in the cellular environment remains largely unknown. Here we use quantitative mass spectrometry (MS) and electrophoretic mobility analyses to show that KO likely forms a covalent complex with a cysteine mutant mimicking hVKOR in a partially oxidized state. Trapping of this potential reaction intermediate suggests that the partially oxidized state is catalytically active in cells. To investigate this activity, we analyze the correlation between the cellular activity and the cellular cysteine status of hVKOR. We find that the partially oxidized hVKOR has considerably lower activity than hVKOR with a fully reduced active site. Although there are more partially oxidized hVKOR than fully reduced hVKOR in cells, these two reactive states contribute about equally to the overall hVKOR activity, and hVKOR catalysis can initiate from either of these states. Overall, the combination of MS quantification and biochemical analyses reveals the catalytic mechanism of this integral membrane enzyme in a cellular environment. Furthermore, these results implicate how hVKOR is inhibited by warfarin, one of the most commonly prescribed drugs.


Assuntos
Vitamina K 1/análogos & derivados , Vitamina K Epóxido Redutases/metabolismo , Catálise , Domínio Catalítico , Células Cultivadas , Humanos , Mutação , Conformação Proteica , Vitamina K 1/química , Vitamina K 1/metabolismo , Vitamina K Epóxido Redutases/química , Vitamina K Epóxido Redutases/genética
3.
J Immunol ; 204(1): 58-67, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31748347

RESUMO

The tetraspanin CD53 has been implicated in B cell development and function. CD53 is a transcriptional target of EBF1, a critical transcription factor for early B cell development. Further, human deficiency of CD53 results in recurrent infections and reduced serum Igs. Although prior studies have indicated a role for CD53 in regulating mature B cells, its role in early B cell development is not well understood. In this study, we show that CD53 expression, which is minimal on hematopoietic stem and progenitor cells, increases throughout bone marrow B cell maturation, and mice lacking CD53 have significantly decreased bone marrow, splenic, lymphatic, and peripheral B cells. Mixed bone marrow chimeras show that CD53 functions cell autonomously to promote B lymphopoiesis. Cd53-/- mice have reduced surface expression of IL-7Rα and diminished phosphatidylinositol 3 kinase and JAK/STAT signaling in prepro- and pro-B cells. Signaling through these pathways via IL-7R is essential for early B cell survival and transition from the pro-B to pre-B cell developmental stage. Indeed, we find increased apoptosis in developing B cells and an associated reduction in pre-B and immature B cell populations in the absence of CD53. Coimmunoprecipitation and proximity ligation studies demonstrate physical interaction between CD53 and IL-7R. Together, these data, to our knowledge, suggest a novel role for CD53 during IL-7 signaling to promote early B cell differentiation.


Assuntos
Linfócitos B/imunologia , Receptores de Interleucina-7/imunologia , Transdução de Sinais/imunologia , Tetraspanina 25/imunologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tetraspanina 25/deficiência
4.
Int J Mol Sci ; 23(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35269902

RESUMO

Coagulation factor IX (FIX) is a vitamin K dependent protein and its deficiency causes hemophilia B, an X-linked recessive bleeding disorder. More than 1000 mutations in the F9 gene have been identified in hemophilia B patients. Here, we systematically summarize the structural and functional characteristics of FIX and the pathogenic mechanisms of the mutations that have been identified to date. The mechanisms of FIX deficiency are diverse in these mutations. Deletions, insertions, duplications, and indels generally lead to severe hemophilia B. Those in the exon regions generate either frame shift or inframe mutations, and those in the introns usually cause aberrant splicing. Regarding point mutations, the bleeding phenotypes vary from severe to mild in hemophilia B patients. Generally speaking, point mutations in the F9 promoter region result in hemophilia B Leyden, and those in the introns cause aberrant splicing. Point mutations in the coding sequence can be missense, nonsense, or silent mutations. Nonsense mutations generate truncated FIX that usually loses function, causing severe hemophilia B. Silent mutations may lead to aberrant splicing or affect FIX translation. The mechanisms of missense mutation, however, have not been fully understood. They lead to FIX deficiency, often by affecting FIX's translation, protein folding, protein stability, posttranslational modifications, activation to FIXa, or the ability to form functional Xase complex. Understanding the molecular mechanisms of FIX deficiency will provide significant insight for patient diagnosis and treatment.


Assuntos
Hemofilia A , Hemofilia B , Códon sem Sentido , Fator IX/genética , Fator IX/metabolismo , Hemofilia B/genética , Humanos , Mutação , Fenótipo
5.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(6): 646-650, 2022 Jun 10.
Artigo em Zh | MEDLINE | ID: mdl-35773773

RESUMO

γ-glutamyl carboxylase (GGCX), also known as vitamin K-dependent glutamyl carboxylase, catalyzes the posttranslational modification of specific glutamate residues in vitamin K-dependent proteins (VKDPs), and participates multiple biological functions including blood coagulation, bone metabolism, vascular calcification, and cell proliferation. It has been reported originally that GGCX pathogenic variation causes blood coagulation deficiency, which is called as vitamin K-dependent coagulation factor deficiency 1 (VKCFD1). Recently, it has been found that GGCX gene variation results in multiple clinical phenotypes, including dermatological, ophthalmological, skeletal or cardiac abnormalities. Among them, dermatological phenotype is the most common, which is known as pseudoxanthoma elasticum-like syndrome. This paper has reviewed the GGCX pathogenic variation associated phenotypes, in order to increase the recognition of GGCX-related genetic diseases and to help its diagnosis and treatment.


Assuntos
Transtornos Herdados da Coagulação Sanguínea , Carbono-Carbono Ligases , Transtornos Herdados da Coagulação Sanguínea/diagnóstico , Transtornos Herdados da Coagulação Sanguínea/enzimologia , Transtornos Herdados da Coagulação Sanguínea/genética , Transtornos Herdados da Coagulação Sanguínea/metabolismo , Carbono-Carbono Ligases/genética , Carbono-Carbono Ligases/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Humanos , Fenótipo , Vitamina K/metabolismo , Vitamina K 1
6.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 37(8): 811-814, 2020 Aug 10.
Artigo em Zh | MEDLINE | ID: mdl-32761584

RESUMO

OBJECTIVE: To develop a cell-based system for the diagnosis of vitamin K-dependent coagulation factor deficiency 1 (VKCFD1). METHODS: In HEK293 cells stably expressing the reporter gene FIX-Gla-PC, the gamma-glutamyl carboxylase (GGCX) gene was knocked out by using CRISPR/Cas9 technology. Enzyme-linked immunosorbent assay (ELISA), DNA sequencing and Western blotting were used to identify the GGCX gene knockout cells. A quickchange point variant method was used to construct the GGCX variant. ELISA was used to assess the influence of GGCX variant on the activity of reporter gene. RESULTS: Two monoclonal cell lines with no reporter activity by ELISA was identified. Edition and knockout of the GGCX gene was confirmed by DNA sequencing and Western blotting. The activity of the reporter gene was recovered by transfection of the wild-type GGCX gene. Thereby two monoclonal cells with GGCX knockout were obtained. By comparing the wild-type and pathogenic GGCX variants, the reporter activity was decreased in the pathogenic variants significantly. CONCLUSION: A cell-based system for the detection of GGCX activity was successfully developed, which can be used for the diagnosis of VKCFD1 caused by GGCX variants.


Assuntos
Transtornos Herdados da Coagulação Sanguínea/genética , Carbono-Carbono Ligases/genética , Vitamina K 1 , Sequência de Bases , Transtornos Herdados da Coagulação Sanguínea/diagnóstico , Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Células HEK293 , Humanos
7.
Biochemistry ; 57(3): 258-266, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29064673

RESUMO

During oxidative protein folding, disulfide bond formation is catalyzed by thiol oxidoreductases. Through dedicated relay pathways, the disulfide is generated in donor enzymes, passed to carrier enzymes, and subsequently delivered to target proteins. The eukaryotic disulfide donors are flavoenzymes, Ero1 in the endoplasmic reticulum and Erv1 in mitochondria. In prokaryotes, disulfide generation is coupled to quinone reduction, catalyzed by intramembrane donor enzymes, DsbB and VKOR. To catalyze de novo disulfide formation, these different disulfide donors show striking structural convergence at several levels. They share a four-helix bundle core structure at their active site, which contains a CXXC motif at a helical end. They have also evolved a flexible loop with shuttle cysteines to transfer electrons to the active site and relay the disulfide bond to the carrier enzymes. Studies of the prokaryotic VKOR, however, have stirred debate about whether the human homologue adopts the same topology with four transmembrane helices and uses the same electron-transfer mechanism. The controversies have recently been resolved by investigating the human VKOR structure and catalytic process in living cells with a mass spectrometry-based approach. Structural convergence between human VKOR and the disulfide donors is found to underlie cofactor reduction, disulfide generation, and electron transfer.


Assuntos
Evolução Molecular , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Compostos de Sulfidrila/química , Vitamina K Epóxido Redutases/química , Catálise , Sequência Conservada , Dissulfetos/química , Humanos , Isomerismo , Dobramento de Proteína , Estrutura Secundária de Proteína
8.
Biochemistry ; 57(3): 286-294, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29192498

RESUMO

Mass spectrometry-based footprinting is an emerging approach for studying protein structure. Because integral membrane proteins are difficult targets for conventional structural biology, we recently developed a mass spectrometry (MS) footprinting method to probe membrane protein-drug interactions in live cells. This method can detect structural differences between apo and drug-bound states of membrane proteins, with the changes inferred from MS quantification of the cysteine modification pattern, generated by residue-specific chemical labeling. Here, we describe the experimental design, interpretation, advantages, and limitations of using cysteine footprinting by taking as an example the interaction of warfarin with vitamin K epoxide reductase, a human membrane protein. Compared with other structural methods, footprinting of proteins in live cells produces structural information for the near native state. Knowledge of cellular conformational states is a necessary complement to the high-resolution structures obtained from purified proteins in vitro. Thus, the MS footprinting method is broadly applicable in membrane protein biology. Future directions include probing flexible motions of membrane proteins and their interaction interface in live cells, which are often beyond the reach of conventional structural methods.


Assuntos
Cisteína/química , Espectrometria de Massas/métodos , Proteínas de Membrana/química , Vitamina K Epóxido Redutases/química , Varfarina/química , Detergentes/química , Células HEK293 , Humanos , Marcação por Isótopo , Ligantes , Conformação Proteica , Solubilidade
9.
Nutr Neurosci ; 21(2): 123-131, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28277184

RESUMO

Domoic acid (DA) is one of the best known marine toxins, causative of important neurotoxic alterations. DA effects are documented both in wildlife and experimental assays, showing that this toxin causes severe injuries principally in the hippocampal area. Accumulating evidence indicates that mitochondrial dysfunction and oxidative stress are involved in DA-induced cognitive functional impairment. Therefore, therapeutics targeted to improve mitochondrial function and increase oxidative stress defence could be beneficial. Quercetin, a bioflavanoid, has been reported to have potent neuroprotective effects and anti-oxidative ability, but its preventive effects on DA-induced mitochondrial dysfunction and cognitive impairment have not been well characterised. In this study, we evaluated the effects of quercetin on DA-induced cognitive deficits in mice and explored its potential mechanism. Our results showed that the oral administration of quercetin to DA-treated mice significantly improved their behavioural performance in a novel objective recognition task and a Morris water maze task. These improvements were mediated, at least in part, by a stimulation of PPARγ coactivator 1α-mediated mitochondrial biogenesis signalling and an amelioration of mitochondrial dysfunction. Moreover, quercetin activated nuclear factorerythroid-2-related factor-2 (Nrf2)-mediated phase II enzymes and decreased reactive oxygen species and protein carbonylation. Furthermore, the AMP-activated protein kinase (AMPK) activity significantly increased in the quercetin-treated group. Taken together, these findings suggest that a reduction in mitochondrial dysfunction through the increase of AMPK activity, coupled with an increase in Nrf2 pathway mediated oxidative defence, may be one of the mechanisms by which quercetin improves cognitive impairment induced by DA in mice.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Quercetina/farmacologia , Animais , Cognição/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ácido Caínico/análogos & derivados , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
10.
Conscious Cogn ; 55: 205-213, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28888137

RESUMO

Testosterone and estrogen are involved in self-related behavioral dispositions and experiences of subjective well-being. In this study, we investigated to what extent the aromatase (CYP19A1) gene, which encodes an enzyme in converting testosterone into estrogen, contributes to subjective well-being and in another self-related disposition: independent and interdependent self-construal. In study 1, a meta-analysis showed that the GG genotype of CYP19A1 (a G/A substitution at Val80, rs700518) was associated with higher testosterone and lower estradiol. In study 2, an empirical study of individuals with the GG (n=115), AG (n=286) and AA (n=193) genotypes indicated that individuals with the GG genotype exhibited higher independent self-construal and higher subjective well-being. The association between the GG genotype of CYP19A1 Val80 and subjective well-being was mediated by the independent self-construal. Our findings reinforce the idea that personality traits such as independent self-construal explain the link between genetic variant and subjective well-being.


Assuntos
Aromatase/fisiologia , Estradiol/sangue , Satisfação Pessoal , Personalidade/fisiologia , Autoimagem , Testosterona/sangue , Adulto , Aromatase/genética , Feminino , Genótipo , Humanos , Masculino , Adulto Jovem
11.
Biochem Biophys Res Commun ; 474(1): 126-130, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27105915

RESUMO

Prokaryotic ubiquitin-like protein (Pup) is a post-translational modifier that can be attached to substrate proteins in Actinobacteria. The modification process is defined as pupylation and is associated with proteasome-mediated protein degradation in mycobacteria and streptomycetes. Here, we report the pupylation of Streptomyces hygroscopicus 5008 in vitro. Each component of the Pup system was expressed in Escherichia coli and poly-Pup chains were observed by western blot analysis. Though only one potential Pup substrate (SHJG_3659) was identified using MS/MS, we verified this candidate and other predicted substrates by a reconstituted Pup system in E. coli. In addition, we discuss the depupylation activity of Dop (a Pup activation enzyme). The results presented here show that pupylation exists in S. hygroscopicus and that a reconstituted Pup system can function in vitro in a heterologous host.


Assuntos
Proteínas de Bactérias/metabolismo , Lisina/metabolismo , Streptomyces/classificação , Streptomyces/metabolismo , Ubiquitinas/metabolismo , Sítios de Ligação , Ligação Proteica , Especificidade da Espécie
12.
Plant Physiol ; 169(4): 2444-61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26486592

RESUMO

The ability to rapidly switch the intracellular energy storage form from starch to lipids is an advantageous trait for microalgae feedstock. To probe this mechanism, we sequenced the 56.8-Mbp genome of Chlorella pyrenoidosa FACHB-9, an industrial production strain for protein, starch, and lipids. The genome exhibits positive selection and gene family expansion in lipid and carbohydrate metabolism and genes related to cell cycle and stress response. Moreover, 10 lipid metabolism genes might be originated from bacteria via horizontal gene transfer. Transcriptomic dynamics tracked via messenger RNA sequencing over six time points during metabolic switch from starch-rich heterotrophy to lipid-rich photoautotrophy revealed that under heterotrophy, genes most strongly expressed were from the tricarboxylic acid cycle, respiratory chain, oxidative phosphorylation, gluconeogenesis, glyoxylate cycle, and amino acid metabolisms, whereas those most down-regulated were from fatty acid and oxidative pentose phosphate metabolism. The shift from heterotrophy into photoautotrophy highlights up-regulation of genes from carbon fixation, photosynthesis, fatty acid biosynthesis, the oxidative pentose phosphate pathway, and starch catabolism, which resulted in a marked redirection of metabolism, where the primary carbon source of glycine is no longer supplied to cell building blocks by the tricarboxylic acid cycle and gluconeogenesis, whereas carbon skeletons from photosynthesis and starch degradation may be directly channeled into fatty acid and protein biosynthesis. By establishing the first genetic transformation in industrial oleaginous C. pyrenoidosa, we further showed that overexpression of an NAD(H) kinase from Arabidopsis (Arabidopsis thaliana) increased cellular lipid content by 110.4%, yet without reducing growth rate. These findings provide a foundation for exploiting the metabolic switch in microalgae for improved photosynthetic production of food and fuels.


Assuntos
Chlorella/metabolismo , Genômica , Metabolismo dos Lipídeos , Amido/metabolismo , Sequência de Bases , Metabolismo dos Carboidratos , Carbono/metabolismo , Chlorella/genética , Ciclo do Ácido Cítrico , Transporte de Elétrons , Ácidos Graxos/metabolismo , Processos Heterotróficos , Dados de Sequência Molecular , Fosforilação Oxidativa , Fotossíntese , Análise de Sequência de DNA
13.
Tumour Biol ; 37(6): 7657-65, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26687759

RESUMO

RNA-binding protein Lin28A is frequently over-expressed in human malignant tumors and is associated with tumor advance and poor prognosis. However, the expression pattern and functions of Lin28A in colon cancer are unknown. In this study, we detected the expression of Lin28A in colon cancer patients and tested the effect of Lin28A on the chemotherapeutic sensitivity of colon cancer cells to 5-fluorouracil (5-FU). As expected, we showed that Lin28A is up-regulated in 73.3 % of colon cancer patients. However, to our surprise, we found that oncogenic protein Lin28A-enforced expression in colon cancer cells enhanced the chemosensitivity of cancer cells to 5-FU via promoting the cell apoptosis. Further mechanisms study revealed that the effect of Lin28A increasing chemosensitivity of cancer cells is in a let-7 independent manner, but which is associated with decreasing the expression of DNA damage repair protein H2AX. Conclusively, here we reported an unexpected function of Lin28A, which may shed lights on fully understanding the physiological and pathological roles of this oncogene.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/genética , Neoplasias do Colo/tratamento farmacológico , Fluoruracila/farmacologia , Proteínas de Neoplasias/fisiologia , Proteínas de Ligação a RNA/fisiologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adulto , Idoso , Apoptose/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Reparo do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Células HCT116 , Histonas/biossíntese , Histonas/genética , Humanos , Masculino , MicroRNAs/fisiologia , Pessoa de Meia-Idade , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , RNA Neoplásico/fisiologia , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Método Simples-Cego
14.
Conscious Cogn ; 44: 186-192, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27522491

RESUMO

Dopamine levels in the brain influence human consciousness. Inspired by the role of Catechol-O-methyltransferase (COMT) in inactivating dopamine in the brain, we investigated to what extent COMT could modulate individual's self-consciousness dispositions and self-consistency by genotyping the COMT Val158Met (rs4680) polymorphism and measuring self-consciousness and self-consistency and congruence in a college student population. The results indicated that COMT Val158Met polymorphism significantly modulated the private self-consciousness. The individuals with Val/Val genotype, corresponding to lower dopamine levels in the brain, were more likely to be aware of their feelings and beliefs. The results also indicated that this polymorphism modulated one's self-flexibility. The individuals with Val/Val genotype showed higher levels of stereotype in self-concept compared with those with Met/Met genotype. These findings suggest that COMT is a predictor of the individual differences in self-consciousness and self-flexibility.


Assuntos
Encéfalo/enzimologia , Catecol O-Metiltransferase/metabolismo , Autoimagem , Adulto , Encéfalo/metabolismo , Catecol O-Metiltransferase/genética , China , Feminino , Humanos , Masculino , Polimorfismo Genético/genética , Estudantes , Universidades , Adulto Jovem
15.
Arch Biochem Biophys ; 543: 40-7, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24374034

RESUMO

Hypoxia-inducible factor-1 (HIF-1) can activate expression of a broad range of genes in response to hypoxia. It has been shown that the levels of peroxisome proliferator-activated receptor γ (PPARγ) are influenced by changes in oxygen tension, and PPARγ plays a critical role in metabolism regulation and cancers. In this research, we observed an increased PPARγ mRNA and protein levels in company with increased HIF-1 protein levels in HepG2 cells in hypoxia as compared with in normoxia. Enforced expression of HIF-1α induced PPARγ1 and PPARγ2 expression, while knockdown of HIF-1α by small interference RNA deduced PPARγ1 and PPARγ2 expression in HepG2 cells under hypoxic conditions. By dual-luciferase reporter assay and chromatin immunoprecipitation assay we confirmed a functional hypoxic response element (HRE) localized at 684bp upstream of the transcriptional start site (TSS) of PPARγ1 and a functional HRE localized at 204bp downstream of the TSS of PPARγ2 in HepG2 cells. Additionally we observed an increase and co-presence of PPARγ and HIF-1α, and a highly positive correlation between PPARγ expression and HIF-1α expression (r=0.553, p<0.0001), in the same tumor tissue areas of hepatocellular carcinoma patients. Our data suggested a new mechanism of hepatocellular carcinoma cells response to hypoxia.


Assuntos
Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Hipóxia Celular , Células Hep G2 , Humanos , Elementos de Resposta/genética , Regulação para Cima
16.
Blood Adv ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820490

RESUMO

Signal peptide (SP) is essential for protein secretion, and pathogenic variants in the SP of FIX have been identified in hemophilia B (HB). However, the underlying mechanism for the genotype-phenotype correlation of these variants has not been well studied. Here we systematically examined the effects of 13 pathogenic point variants in the SP of FIX using different approaches. Our results showed that these point variants lead to HB by missense variants and/or aberrant pre-mRNA splicing. The missense variants in h-region mainly affected the co-translational translocation function of the SP, and those in c-region caused FIX deficiency mainly by disturbing the co-translational translocation and/or cleavage of the SP. Almost absolute aberrant pre-mRNA splicing was only observed in variants of c.82T>G, but a slight change of splicing patterns was found in variants of c.53G>T, c.77C>A, c.82T>C, and c.83G>A, indicating that these variants might have different degree to affect pre-mRNA splicing. Although two 6-nt deletion aberrant pre-mRNA splicing products caused FIX deficiency by disturbing the SP cleavage, but they could produce some functional mature FIX and vitamin K could increase the secretion of functional FIX. Taken together, our data indicated that pathogenic variants in the SP of FIX caused HB through diverse molecular mechanisms or even a mixture of several mechanisms, and vitamin K availability could be partially attributed to varying bleeding tendencies in patients carrying the same variant in the SP.

17.
Acta Pharmacol Sin ; 34(3): 336-41, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23377548

RESUMO

Hypoxia plays an important role in the tumor microenvironment by allowing the development and maintenance of cancer cells, but the regulatory mechanisms by which tumor cells adapt to hypoxic conditions are not yet well understood. MicroRNAs are recognized as a new class of master regulators that control gene expression and are responsible for many normal and pathological cellular processes. Studies have shown that hypoxia inducible factor 1 (HIF1) regulates a panel of microRNAs, whereas some of microRNAs target HIF1. The interaction between microRNAs and HIF1 can account for many vital events relevant to tumorigenesis, such as angiogenesis, metabolism, apoptosis, cell cycle regulation, proliferation, metastasis, and resistance to anticancer therapy. This review will summarize recent findings on the roles of hypoxia and microRNAs in human cancer and illustrate the machinery by which microRNAs interact with hypoxia in tumor cells. It is expected to update our knowledge about the regulatory roles of microRNAs in regulating tumor microenvironments and thus benefit the development of new anticancer drugs.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Neoplasias , Hipóxia Celular/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/irrigação sanguínea , Neoplasias/genética , Neoplasias/metabolismo , Neovascularização Patológica/genética , Regulação para Cima
18.
Biochem J ; 441(2): 675-83, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21970364

RESUMO

Metabolism under hypoxia is significantly different from that under normoxia. It has been well elucidated that HIF-1 (hypoxia-inducible factor-1) plays a central role in regulating glucose metabolism under hypoxia; however, the role of HIF-1 in lipid metabolism has not yet been well addressed. In the present study we demonstrate that HIF-1 promotes LDL (low-density lipoprotein) and VLDL (very-LDL) uptake through regulation of VLDLR (VLDL receptor) gene expression under hypoxia. Increased VLDLR mRNA and protein levels were observed under hypoxic or DFO (deferoxamine mesylate salt) treatment in MCF7, HepG2 and HeLa cells. Using dual-luciferase reporter and ChIP (chromatin immunoprecipitation) assays we confirmed a functional HRE (hypoxia-response element) which is localized at +405 in exon 1 of the VLDLR gene. Knockdown of HIF1A (the α subunit of HIF-1) and VLDLR, but not HIF2A (the α subunit of HIF-2), attenuated hypoxia-induced lipid accumulation through affecting LDL and VLDL uptake. Additionally we also observed a correlation between HIF-1 activity and VLDLR expression in hepatocellular carcinoma specimens. The results of the present study suggest that HIF-1-mediated VLDLR induction influences intracellular lipid accumulation through regulating LDL and VLDL uptake under hypoxia.


Assuntos
Fator 1 Induzível por Hipóxia/fisiologia , Hipóxia/metabolismo , Lipoproteínas LDL/metabolismo , Lipoproteínas VLDL/metabolismo , Receptores de LDL/biossíntese , Linhagem Celular Tumoral , Humanos
19.
J Chromatogr Sci ; 61(8): 766-772, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36477207

RESUMO

A high-performance liquid chromatograph with diode array detector was established for the simultaneous determination of five phenylethanoid glycosides in Syringa pubescens Turcz. The optimal chromatographic conditions were achieved on a Zorbax C18 column using gradient elution with 0.5% aqueous acetic acid and acetonitrile as the mobile phase at the flow rate of 1.0 mL/min. The detection wavelength was developed as follows: 0-10 min, 276 nm; 10-45 min, 332 nm. The validation of the method including linearity, precision, stability, accuracy, repeatability and recovery was tested. The chemometric analysis including hierarchical cluster analysis and principal component analysis was employed to investigate the similarity and difference of samples from different geographical origin. The results revealed that S. pubescens samples were divided into four clusters based on the phenylethanoid glycosides contents. Antioxidant activity of extract was measured using three different methods including α,α-diphenyl-ß-picrylhydrazyl and 2,2-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) radical scavenging assays, and ferric reducing antioxidant power assay. Furthermore, different phenylethanoid glycosides exhibited different contribution to antioxidant capacities. This study provides a foundation for the quality evaluation and offers scientific data for the utilization of S. pubescens resources.


Assuntos
Glicosídeos , Syringa , Glicosídeos/análise , Antioxidantes , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão/métodos , China
20.
Leuk Lymphoma ; 64(1): 71-78, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36222521

RESUMO

Although clinical outcomes of CLL have improved with the use of BCL-2 inhibitor, ABT-199, acquired resistance eventually occurs in many cases, which leads to CLL disease progression. Thus, understanding the mechanisms that mediate this relapse is important to design improved therapies. Herein, we report that cytokine IFN-γ, secreted by dysfunctional T cells, enhanced CLL cells resistance to ABT-199. IFN-γ stimulation significantly increased the expression of BCL-2, MCL-1 and BCL-xL. Blocking JAK1/2-STAT3 signaling pathway impaired the expression of these anti-apoptotic proteins after IFN-γ stimulation. The combination of ABT-199 with JAK1/2 inhibitor Ruxolitinib or STAT3 inhibitors Stattic and C188-9 increased malignant B cell death. In summary, we show that IFN-γ enhanced CLL cells resistance to ABT-199 at least in part by up-regulating BCL-2, MCL-1 and BCL-xL expression via JAK1/2-STAT3 pathway, and thus blocking this pathway with inhibitors increased ABT-199 efficiency to induce CLL cell apoptosis, suggesting a potential therapeutically relevant combination to overcome ABT-199 resistance.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Interferon gama/farmacologia , Interferon gama/metabolismo , Apoptose , Nitrofenóis/farmacologia , Compostos de Bifenilo/farmacologia , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA