Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Hepatol ; 74(1): 135-147, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32693003

RESUMO

BACKGROUND & AIMS: RNA editing introduces nucleotide changes in RNA sequences. Recent studies have reported that aberrant adenosine-to-inosine RNA editing is implicated in cancers. Until now, very few functionally important protein-recoding editing targets have been discovered. Here, we investigated the role of a recently discovered protein-recoding editing target COPA (coatomer subunit α) in hepatocellular carcinoma (HCC). METHODS: Clinical implication of COPA editing was studied in a cohort of 125 HCC patients. CRISPR/Cas9-mediated knockout of the editing site complementary sequence (ECS) was used to delete edited COPA transcripts endogenously. COPA editing-mediated change in its transcript or protein stability was investigated upon actinomycin D or cycloheximide treatment, respectively. Functional difference in tumourigenesis between wild-type and edited COPA (COPAWTvs. COPAI164V) and the exact mechanisms were also studied in cell models and mice. RESULTS: ADAR2 binds to double-stranded RNA formed between edited exon 6 and the ECS at intron 6 of COPA pre-mRNA, causing an isoleucine-to-valine substitution at residue 164. Reduced editing of COPA is implicated in the pathogenesis of HCC, and more importantly, it may be involved in many cancer types. Upon editing, COPAWT switches from a tumour-promoting gene to a tumour suppressor that has a dominant-negative effect. Moreover, COPAI164V may undergo protein conformational change and therefore become less stable than COPAWT. Mechanistically, COPAI164V may deactivate the PI3K/AKT/mTOR pathway through downregulation of caveolin-1 (CAV1). CONCLUSIONS: We uncover an RNA editing-associated mechanism of hepatocarcinogenesis by which downregulation of ADAR2 caused the loss of tumour suppressive COPAI164V and concurrent accumulation of tumour-promoting COPAWT in tumours; a rapid degradation of COPAI164V protein and hyper-activation of the PI3K/AKT/mTOR pathway further promote tumourigenesis. LAY SUMMARY: RNA editing is a process in which RNA is changed after it is made from DNA, resulting in an altered gene product. In this study, we found that RNA editing of a gene known as coatomer subunit α (COPA) is lower in tumour samples and discovered that this editing process changes COPA protein from a tumour-promoting form to a tumour-suppressive form. Loss of the edited COPA promotes the development of liver cancer.


Assuntos
Carcinogênese/genética , Carcinoma Hepatocelular , Proteína Coatomer/genética , Regulação da Expressão Gênica/genética , Neoplasias Hepáticas , Edição de RNA/genética , Adenosina Desaminase/genética , Animais , Sequência de Bases , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Caveolina 1/metabolismo , Linhagem Celular , Regulação para Baixo , Genes Supressores de Tumor , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Camundongos , Proteínas de Neoplasias , Estabilidade Proteica , Proteínas de Ligação a RNA/genética
2.
Exp Cell Res ; 352(1): 95-103, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28161539

RESUMO

KIF3b is a protein of the kinesin-2 family which plays an important role in intraflagellar transport. Testis cancer is a common cancer among young men. Its diagnostic rate is increasing and over half of the cases are seminomas. Many aspects of the mechanism and gene expression background of this cancer remain unclear. Using western-blotting and semi-quantitative PCR we found high protein levels of KIF3b enrichment in seminoma tissue despite the mRNA levels remaining equivalent to that of normal testicular tissues. The distribution of KIF3b was mainly in cells with division potential. Wound-healing assays and cell counting kit assays showed that the knockdown of KIF3b significantly suppressed cell migration ability, viability and number in HeLa cells. Immunofluorescence images during the cell cycle revealed that KIF3b tended to gather at the spindles and was enriched at the central spindle. This indicated that KIF3b may also have direct impacts upon spindle formation and cytokinesis. By counting the numbers of nuclei, spindles and cells, we found that the rates of multipolar division and multi-nucleation were raised in KIF3b-knockdown cells. In this way we demonstrate that KIF3b functions importantly in mitosis and may be essential to seminoma cell division and proliferation as well as being necessary for normal cell division.


Assuntos
Ciclo Celular , Citocinese/fisiologia , Cinesinas/metabolismo , Mitose/fisiologia , Seminoma/patologia , Neoplasias Testiculares/patologia , Apoptose , Western Blotting , Movimento Celular , Proliferação de Células , Imunofluorescência , Células HeLa , Humanos , Cinesinas/genética , Masculino , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Seminoma/genética , Seminoma/metabolismo , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismo , Células Tumorais Cultivadas
3.
Cell Rep ; 43(7): 114400, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38935501

RESUMO

ADAR1-mediated RNA editing establishes immune tolerance to endogenous double-stranded RNA (dsRNA) by preventing its sensing, primarily by MDA5. Although deleting Ifih1 (encoding MDA5) rescues embryonic lethality in ADAR1-deficient mice, they still experience early postnatal death, and removing other MDA5 signaling proteins does not yield the same rescue. Here, we show that ablation of MDA5 in a liver-specific Adar knockout (KO) murine model fails to rescue hepatic abnormalities caused by ADAR1 loss. Ifih1;Adar double KO (dKO) hepatocytes accumulate endogenous dsRNAs, leading to aberrant transition to a highly inflammatory state and recruitment of macrophages into dKO livers. Mechanistically, progranulin (PGRN) appears to mediate ADAR1 deficiency-induced liver pathology, promoting interferon signaling and attracting epidermal growth factor receptor (EGFR)+ macrophages into dKO liver, exacerbating hepatic inflammation. Notably, the PGRN-EGFR crosstalk communication and consequent immune responses are significantly repressed in ADAR1high tumors, revealing that pre-neoplastic or neoplastic cells can exploit ADAR1-dependent immune tolerance to facilitate immune evasion.

4.
Nat Commun ; 13(1): 1793, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379802

RESUMO

The dynamic regulation of alternative splicing requires coordinated participation of multiple RNA binding proteins (RBPs). Aberrant splicing caused by dysregulation of splicing regulatory RBPs is implicated in numerous cancers. Here, we reveal a frequently overexpressed cancer-associated protein, DAP3, as a splicing regulatory RBP in cancer. Mechanistically, DAP3 coordinates splicing regulatory networks, not only via mediating the formation of ribonucleoprotein complexes to induce substrate-specific splicing changes, but also via modulating splicing of numerous splicing factors to cause indirect effect on splicing. A pan-cancer analysis of alternative splicing across 33 TCGA cancer types identified DAP3-modulated mis-splicing events in multiple cancers, and some of which predict poor prognosis. Functional investigation of non-productive splicing of WSB1 provides evidence for establishing a causal relationship between DAP3-modulated mis-splicing and tumorigenesis. Together, our work provides critical mechanistic insights into the splicing regulatory roles of DAP3 in cancer development.


Assuntos
Processamento Alternativo , Neoplasias , Processamento Alternativo/genética , Proteínas Reguladoras de Apoptose/genética , Humanos , Neoplasias/genética , Splicing de RNA/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
5.
Nat Commun ; 13(1): 1508, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314703

RESUMO

Circular RNAs (circRNAs) are produced by head-to-tail back-splicing which is mainly facilitated by base-pairing of reverse complementary matches (RCMs) in circRNA flanking introns. Adenosine deaminases acting on RNA (ADARs) are known to bind double-stranded RNAs for adenosine to inosine (A-to-I) RNA editing. Here we characterize ADARs as potent regulators of circular transcriptome by identifying over a thousand of circRNAs regulated by ADARs in a bidirectional manner through and beyond their editing function. We find that editing can stabilize or destabilize secondary structures formed between RCMs via correcting A:C mismatches to I(G)-C pairs or creating I(G).U wobble pairs, respectively. We provide experimental evidence that editing also favors the binding of RNA-binding proteins such as PTBP1 to regulate back-splicing. These ADARs-regulated circRNAs which are ubiquitously expressed in multiple types of cancers, demonstrate high functional relevance to cancer. Our findings support a hitherto unappreciated bidirectional regulation of circular transcriptome by ADARs and highlight the complexity of cross-talk in RNA processing and its contributions to tumorigenesis.


Assuntos
Neoplasias , Edição de RNA , Adenosina/metabolismo , Adenosina Desaminase/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , RNA Circular/genética , RNA de Cadeia Dupla , Transcriptoma
6.
Sci Adv ; 6(25): eaba5136, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32596459

RESUMO

RNA editing introduces nucleotide changes in RNA sequences. Recent studies have reported that aberrant A-to-I RNA editing profiles are implicated in cancers. Albeit changes in expression and activity of ADAR genes are thought to have been responsible for the dysregulated RNA editome in diseases, they are not always correlated, indicating the involvement of secondary regulators. Here, we uncover DAP3 as a potent repressor of editing and a strong oncogene in cancer. DAP3 mainly interacts with the deaminase domain of ADAR2 and represses editing via disrupting association of ADAR2 with its target transcripts. PDZD7, an exemplary DAP3-repressed editing target, undergoes a protein recoding editing at stop codon [Stop →Trp (W)]. Because of editing suppression by DAP3, the unedited PDZD7WT, which is more tumorigenic than edited PDZD7Stop518W, is accumulated in tumors. In sum, cancer cells may acquire malignant properties for their survival advantage through suppressing RNA editome by DAP3.


Assuntos
Adenosina , Proteínas Reguladoras de Apoptose , Neoplasias , Proteínas de Ligação a RNA , Adenosina/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Humanos , Inosina/genética , Inosina/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
7.
Nat Commun ; 11(1): 799, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034135

RESUMO

RNA editing and splicing are the two major processes that dynamically regulate human transcriptome diversity. Despite growing evidence of crosstalk between RNA editing enzymes (mainly ADAR1) and splicing machineries, detailed mechanistic explanations and their biological importance in diseases, such as cancer are still lacking. Herein, we identify approximately a hundred high-confidence splicing events altered by ADAR1 and/or ADAR2, and ADAR1 or ADAR2 protein can regulate cassette exons in both directions. We unravel a binding tendency of ADARs to dsRNAs that involves GA-rich sequences for editing and splicing regulation. ADAR1 edits an intronic splicing silencer, leading to recruitment of SRSF7 and repression of exon inclusion. We also present a mechanism through which ADAR2 binds to dsRNA formed between GA-rich sequences and polypyrimidine (Py)-tract and precludes access of U2AF65 to 3' splice site. Furthermore, we find these ADARs-regulated splicing changes per se influence tumorigenesis, not merely byproducts of ADARs editing and binding.


Assuntos
Adenosina Desaminase/metabolismo , Neoplasias/genética , Precursores de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Adenosina Desaminase/genética , Processamento Alternativo , Animais , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Éxons , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Membrana/genética , Camundongos Endogâmicos NOD , Degradação do RNAm Mediada por Códon sem Sentido , Edição de RNA , Sítios de Splice de RNA , Splicing de RNA , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Fatores de Processamento de Serina-Arginina/genética , Fator de Processamento U2AF/genética
8.
Oncotarget ; 8(37): 61373-61384, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-28977870

RESUMO

C-terminus kinesin motor KIFC1 is known for centrosome clustering in cancer cells with supernumerary centrosomes. KIFC1 crosslinks and glides on microtubules (MT) to assist normal bipolar spindle formation to avoid multi-polar cell division, which might be fatal. Testis cancer is the most common human cancer among young men. However, the gene expression profiles of testis cancer is still not complete and the expression of the C-terminus kinesin motor KIFC1 in testis cancer has not yet been examined. We found that KIFC1 is enriched in seminoma tissues in both mRNA level and protein level, and is specifically enriched in the cells that divide actively. Cell experiments showed that KIFC1 may be essential in cell division, but not essential in metastasis. Based on subcellular immuno-florescent staining results, we also described the localization of KIFC1 during cell cycle. By expressing ΔC-FLAG peptide in the cells, we found that the tail domain of KIFC1 might be essential for the dynamic disassociation of KIFC1, and the motor domain of KIFC1 might be essential for the degradation of KIFC1. Our work provides a new perspective for seminoma research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA