Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 30(11): 18530-18538, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221652

RESUMO

We demonstrate a point-to-point clock synchronization protocol based on bidirectionally propagating photons generated in a single spontaneous parametric down-conversion (SPDC) source. Tight timing correlations between photon pairs are used to determine the single and round-trip times measured by two separate clocks, providing sufficient information for distance-independent absolute synchronization secure against symmetric delay attacks. We show that the coincidence signature useful for determining the round-trip time of a synchronization channel, established using a 10 km telecommunications fiber, can be derived from photons reflected off the end face of the fiber without additional optics. Our technique allows the synchronization of multiple clocks with a single reference clock co-located with the source, without requiring additional pair sources, in a client-server configuration suitable for synchronizing a network of clocks.

2.
Opt Express ; 29(3): 3415-3424, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770940

RESUMO

The temporal response of single-photon detectors is usually obtained by measuring their impulse response to short-pulsed laser sources. In this work, we present an alternative approach using time-correlated photon pairs generated in spontaneous parametric down-conversion (SPDC). By measuring the cross-correlation between the detection times recorded with an unknown and a reference photodetector, the temporal response function of the unknown detector can be extracted. Changing the critical phase-matching conditions of the SPDC process provides a wavelength-tunable source of photon pairs. We demonstrate a continuous wavelength-tunability from 526 nm to 661 nm for one photon of the pair, and 1050 nm to 1760 nm for the other photon. The source allows, in principle, to access an even wider wavelength range by simply changing the pump laser of the SPDC-based source. As an initial demonstration, we characterize single-photon avalance detectors sensitive to the two distinct wavelength bands, one based on Silicon, the other based on Indium Gallium Arsenide.

3.
Phys Rev Lett ; 121(15): 150402, 2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30362792

RESUMO

We present a violation of the Clauser-Horne-Shimony-Holt inequality without the fair sampling assumption with a continuously pumped photon pair source combined with two high efficiency superconducting detectors. Because of the continuous nature of the source, the choice of the duration of each measurement round effectively controls the average number of photon pairs participating in the Bell test. We observe a maximum violation of S=2.016 02(32) with an average number of pairs per round of ≈0.32, compatible with our system overall detection efficiencies. Systems that violate a Bell inequality are guaranteed to generate private randomness, with the randomness extraction rate depending on the observed violation and on the repetition rate of the Bell test. For our realization, the optimal rate of randomness generation is a compromise between the observed violation and the duration of each measurement round, with the latter realistically limited by the detection time jitter. Using an extractor composably secure against quantum adversary with quantum side information, we calculate an asymptotic rate of ≈1300 random bits/s. With an experimental run of 43 min, we generated 617 920 random bits, corresponding to ≈240 random bits/s.

4.
Front Microbiol ; 15: 1387855, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638904

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a common pathogen contributing to healthcare-associated infections, which can result in multiple sites infections. The epidemiological characteristics of MRSA exhibit variability among distinct regions and healthcare facilities. The aim of this study was to investigate the molecular epidemiology and nosocomial outbreak characteristics of MRSA in a county-level hospital in China. A total of 130 non-repetitive MRSA strains were collected from December 2020 to November 2021. Whole-genome sequencing (WGS) was performed to identify antimicrobial resistance and virulence factors. Phylogenetic analysis was conducted to ascertain genetic diversity and phylogenetic relationships. Independent transmission scenarios were determined by the phylogeny derived from single nucleotide polymorphisms (SNPs) within the core genome. All the MRSA isolates were collected from the intensive care unit (30.00%, 39/130), the department of otorhinolaryngology (10.00%, 13/130) and the department of burn unit (9.23%, 12/130). The clinical samples mainly included phlegm (53.85%, 70/130), purulent fluid (24.62%, 32/130), and secretions (8.46%, 11/130). The resistance rates to erythromycin, clindamycin and ciprofloxacin were 75.38, 40.00, and 39.23%, respectively. All the isolates belonged to 11 clonal complexes (CCs), with the major prevalent types were CC5, CC59, and CC398, accounting for 30.00% (39/130), 29.23% (38/130), and 16.92% (22/130), respectively. Twenty sequence types (STs) were identified, and ST59 (25.38%, 33/130) was the dominant lineage, followed by ST5 (23.84%, 31/130) and ST398 (16.92%, 22/130). Three different SCCmec types were investigated, most of isolates were type IV (33.85%, 44/130), followed by type II (27.69%, 36/130) and type III (0.77%, 1/130). The common clonal structures included CC5-ST5-t2460-SCCmec IIa, CC59-ST59-t437-SCCmec IV and CC398-ST398-t034-SCCmec (-), with rates of 16.92% (22/130), 14.62% (19/130), and 13.84% (18/130), respectively. Only 12 panton-valentine leucocidin (PVL) positive strains were identified. Two independent clonal outbreaks were detected, one consisting of 22 PVL-negative strains belongs to CC5-ST5-t2460-SCCmec IIa and the other consisting of 8 PVL-negative strains belongs to CC5-ST5-t311-SCCmec IIa. Overall, our study indicated that the CC5 lineage emerged as the predominant epidemic clone of MRSA, responsible for nosocomial outbreaks and transmission within a county-level hospital in China, highlighting the necessity to strengthen infection control measures for MRSA in such healthcare facilities.

5.
Rev Sci Instrum ; 89(12): 123108, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30599561

RESUMO

Transition-edge sensors (TESs) are photon-number resolving calorimetric spectrometers with near unit efficiency. Their recovery time, which is on the order of microseconds, limits the number resolving ability and timing accuracy in high photon-flux conditions. This is usually addressed by pulsing the light source or discarding overlapping signals, thereby limiting its applicability. We present an approach to assign detection times to overlapping detection events in the regime of low signal-to-noise ratio, as in the case of TES detection of near-infrared radiation. We use a two-level discriminator, inherently robust against noise, to coarsely locate pulses in time and timestamp individual photoevents by fitting to a heuristic model. As an example, we measure the second-order time correlation of a coherent source in a single spatial mode using a single TES detector.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA