Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38338482

RESUMO

Phlorizin, as a flavonoid from a wide range of sources, is gradually becoming known for its biological activity. Phlorizin can exert antioxidant effects by regulating the IL-1ß/IKB-α/NF-KB signaling pathway. At the same time, it exerts its antibacterial activity by reducing intracellular DNA agglutination, reducing intracellular protein and energy synthesis, and destroying intracellular metabolism. In addition, phlorizin also has various pharmacological effects such as antiviral, antidiabetic, antitumor, and hepatoprotective effects. Based on domestic and foreign research reports, this article reviews the plant sources, extraction, and biological activities of phlorizin, providing a reference for improving the clinical application of phlorizin.


Assuntos
Glucosídeos , Florizina , Florizina/farmacologia , Florizina/metabolismo , Antioxidantes/farmacologia , Flavonoides , Hipoglicemiantes/farmacologia
2.
Int J Biol Macromol ; 262(Pt 1): 129937, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325683

RESUMO

Diabetic wounds are typically chronic wounds and the healing process is limited by problems such as high blood glucose levels, bacterial infections, and other issues that make wound healing difficult. Designing drug-loaded wound dressings is an effective way to promote diabetic wound healing. In this study, we developed an SA/PVA nanofiber (SPS) containing Shikonin (SK) for the treatment of diabetic wounds. The prepared nanofibers were uniform in diameter, had good hydrophilicity and high water vapor permeability, and effectively promoted gas exchange between the wound site and the outside world. The results of in vitro experiments showed that SPS was effective in antimicrobial, antioxidant, and biocompatible. In vivo tests showed that the wound healing rate of mice treated with SPS reached 85.5 %. Immunohistochemical staining results showed that SPS was involved in the diabetic wound healing process through the up-regulation of growth factors (CD31, HIF-1α) and the down-regulation of inflammatory factors (CD68). Western blotting experiments showed that SPS attenuated the inflammation through the inhibition of the IκBα/NF-κB signaling pathway. These results suggest that SPS is a promising candidate for future clinical application of chronic wound dressings.


Assuntos
Diabetes Mellitus , Nanofibras , Naftoquinonas , Animais , Camundongos , Álcool de Polivinil/farmacologia , Alginatos/farmacologia , Cicatrização , Antibacterianos/farmacologia
3.
Int J Biol Macromol ; 274(Pt 2): 133466, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942411

RESUMO

The prevalence and impact of type 2 diabetes mellitus (T2DM) is a major global health problem. The treatment process of T2DM is long and difficult to cure. Therefore, it is necessary to explore alternative or complementary methods to deal with the various challenges brought by T2DM. Natural plant polysaccharides (NPPs) have certain potential in the treatment of T2DM. However, many studies have not considered the relationship between the structure of NPPs and their anti-T2DM activity. This paper reviews the relevant anti-T2DM mechanisms of NPPs, including modulation of insulin action, promotion of glucose metabolism and modulation of postprandial glucose levels, anti-inflammation and modulation of gut microbiota (GM) and metabolism. This paper provides an in-depth study of the conformational relationships of NPPs and facilitates the development of anti-T2DM drugs or dietary supplements with NPPs.

4.
Int J Biol Macromol ; 273(Pt 2): 133040, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38857721

RESUMO

Liver injury caused by type-II diabetes mellitus (DM) is a significant public-health concern worldwide. We used chitosan (CS) to modify dihydromyricetin (DHM)-loaded liposomes (DL) through charge interaction. The effect of CS-modified DL (CDL) on liver injury in mice suffering from DM was investigated in vivo and in vitro. CDL exhibited superior antioxidant capacity and stability. Pharmacokinetic analyses revealed a 3.23- and 1.92-fold increase in the drug concentration-time curve (953.60 ± 122.55 ng/mL/h) in the CDL-treated group as opposed to the DHM-treated group (295.15 ± 25.53 ng/mL/h) and DL-treated group (495.31 ± 65.21 ng/mL/h). The maximum drug concentration in blood (Tmax) of the CDL group saw a 2.26- and 1.21-fold increase compared with that in DHM and DL groups. We observed a 1.49- and 1.31-fold increase in the maximum drug concentration in blood (Cmax) in the CDL group compared with that in DHM and DL groups. Western blotting suggested that CDL could alleviate liver injury in mice suffering from DM by modulating inflammatory factors and the transforming growth factor-ß1/Smad2/Smad3 signaling pathway. In conclusion, modification of liposomes using CS is a viable approach to address the limitations of conventional liposomes and insoluble drugs.


Assuntos
Quitosana , Flavonóis , Lipossomos , Animais , Quitosana/química , Quitosana/farmacologia , Lipossomos/química , Flavonóis/farmacologia , Flavonóis/administração & dosagem , Camundongos , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/lesões , Fígado/patologia , Antioxidantes/farmacologia , Antioxidantes/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos
5.
Int J Biol Macromol ; 259(Pt 1): 129124, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176509

RESUMO

The wound of diabetes has long-term excessive inflammation leading to wound fibrosis and scar formation. In the process of diabetic wound healing, good wound dressing is required for intervention. In this study, we designed a dihydromyricetin-loaded hydrogel (PCD) based on phellinus igniarius polysaccharide and l-arginine modified chitosan as an alternative material to promote diabetes wound healing. PCD had a uniform porous structure, good thermal stability, excellent mechanical properties, high water absorption, excellent antioxidant and anti-inflammatory activities and good biocompatibility and biodegradability. In addition, in the full-thickness skin trauma model of diabetes, PCD significantly inhibited the JNK signaling pathway to reduce inflammatory response, and significantly down-regulated the expression of TGF-ß1, Smad2, Smad3 and Smad4 to directly inhibit the TGF-ß/Smad signaling pathway to accelerate wound healing and slow down scar formation in diabetes mice. Therefore, PCD has a broad application prospect in promoting diabetes wound healing.


Assuntos
Quitosana , Diabetes Mellitus Experimental , Flavonóis , Phellinus , Camundongos , Animais , Quitosana/farmacologia , Quitosana/química , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Cicatriz , Hidrogéis , Transdução de Sinais
6.
Int J Biol Macromol ; 263(Pt 1): 130226, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368971

RESUMO

With the improvement of modern living standards, the challenge of diabetic wound healing has significantly impacted the public health system. In this study, our objective was to enhance the bioactivity of taxifolin (TAX) by encapsulating it in liposomes using a thin film dispersion method. Additionally, polyvinyl alcohol/carboxymethyl chitosan-based hydrogels were prepared through repeated freeze-thawing. In vitro and in vivo experiments were conducted to investigate the properties of the hydrogel and its effectiveness in promoting wound healing in diabetic mice. The results of the experiments revealed that the encapsulation efficiency of taxifolin liposomes (TL) was 89.80 ± 4.10 %, with a drug loading capacity of 17.58 ± 2.04 %. Scanning electron microscopy analysis demonstrated that the prepared hydrogels possessed a porous structure, facilitating gas exchange and the absorption of wound exudates. Furthermore, the wound repair experiments in diabetic mice showed that the TL-loaded hydrogels (TL-Gels) could expedite wound healing by suppressing the inflammatory response and promoting the expression of autophagy-related proteins. Overall, this study highlights that TL-Gels effectively reduce wound healing time by modulating the inflammatory response and autophagy-related protein expression, thus offering promising prospects for the treatment of hard-to-heal wounds induced by diabetes.


Assuntos
Quitosana , Diabetes Mellitus Experimental , Quercetina/análogos & derivados , Camundongos , Animais , Quitosana/química , Lipossomos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Álcool de Polivinil/química , Cicatrização , Hidrogéis/química , Inflamação , Autofagia
7.
Carbohydr Polym ; 336: 122115, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670750

RESUMO

To alleviate skull defects and enhance the biological activity of taxifolin, this study utilized the thin-film dispersion method to prepare paclitaxel liposomes (TL). Thiolated chitosan (CSSH)-modified TL (CTL) was synthesized through charge interactions. Injectable hydrogels (BLG) were then prepared as hydrogel scaffolds loaded with TAX (TG), TL (TLG), and CTL (CTLG) using a Schiff base reaction involving oxidized dextran and carboxymethyl chitosan. The study investigated the bone reparative properties of CTLG through molecular docking, western blot techniques, and transcriptome analysis. The particle sizes of CTL were measured at 248.90 ± 14.03 nm, respectively, with zeta potentials of +36.68 ± 5.43 mV, respectively. CTLG showed excellent antioxidant capacity in vitro. It also has a good inhibitory effect on Escherichia coli and Staphylococcus aureus, with inhibition rates of 93.88 ± 1.59 % and 88.56 ± 2.83 % respectively. The results of 5-ethynyl-2 '-deoxyuridine staining, alkaline phosphatase staining and alizarin red staining showed that CTLG also had the potential to promote the proliferation and differentiation of mouse embryonic osteoblasts (MC3T3-E1). The study revealed that CTLG enhances the expression of osteogenic proteins by regulating the Wnt signaling pathway, shedding light on the potential application of TAX and bone regeneration mechanisms.


Assuntos
Proliferação de Células , Quitosana , Hidrogéis , Lipossomos , Osteoblastos , Quercetina , Quercetina/análogos & derivados , Crânio , Via de Sinalização Wnt , Animais , Quitosana/análogos & derivados , Quitosana/química , Quitosana/farmacologia , Quercetina/farmacologia , Quercetina/química , Lipossomos/química , Via de Sinalização Wnt/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Proliferação de Células/efeitos dos fármacos , Camundongos , Crânio/efeitos dos fármacos , Crânio/patologia , Crânio/metabolismo , Ratos , Regeneração Óssea/efeitos dos fármacos , Ratos Sprague-Dawley , Osteogênese/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Diferenciação Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Masculino , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA