Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 49(24): 14213-20, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26580982

RESUMO

Hollow fiber supported liquid membrane (HFSLM) extraction was coupled with ICP-MS for speciation analysis of labile Ag(I) and total Ag(I) in dispersions of silver nanoparticles (AgNPs) and environmental waters. Ag(I) in aqueous samples was extracted into the HFSLM of 5%(m/v) tri-n-octylphosphine oxide in n-undecane, and stripped in the acceptor of 10 mM Na2S2O3 and 1 mM Cu(NO3)2 prepared in 5 mM NaH2PO4-Na2HPO4 buffer (pH 7.5). Negligible depletion and exhaustive extraction were conducted under static and 250 rpm shaking to extract the labile Ag(I) and total Ag(I), respectively. The extraction equilibration was reached in 8 h for both extraction modes. The extraction efficiency and detection limit were (2.97 ± 0.25)% and 0.1 µg/L for labile Ag(I), and (82.3 ± 2.0)% and 0.5 µg/L for total Ag(I) detection, respectively. The proposed method was applied to determine labile Ag(I) and total Ag(I) in different sized AgNP dispersions and real environmental waters, with spiked recoveries of total Ag(I) in the range of 74.0-98.1%. With the capability of distinguishing labile and total Ag(I), our method offers a new approach for evaluating the bioavailability and understanding the fate and toxicity of AgNPs in aquatic systems.


Assuntos
Extração Líquido-Líquido/métodos , Nanopartículas Metálicas/análise , Prata/análise , Poluentes Químicos da Água/análise , China , Limite de Detecção , Extração Líquido-Líquido/instrumentação , Espectrometria de Massas/métodos , Membranas Artificiais , Nanopartículas Metálicas/química , Compostos Organofosforados/química , Tamanho da Partícula
2.
Environ Sci Technol ; 48(1): 403-11, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24328224

RESUMO

The fast growing and abundant use of silver nanoparticles (AgNPs) in commercial products alerts us to be cautious of their unknown health and environmental risks. Because of the inherent redox instability of silver, AgNPs are highly dynamic in the aquatic system, and the cycle of chemical oxidation of AgNPs to release Ag(+) and reconstitution to form AgNPs is expected to occur in aquatic environments. This study investigated how inevitable environmentally relevant factors like sunlight, dissolved organic matter (DOM), pH, Ca(2+)/Mg(2+), Cl(-), and S(2-) individually or in combination affect the chemical transformation of AgNPs. It was demonstrated that simulated sunlight induced the aggregation of AgNPs, causing particle fusion or self-assembly to form larger structures and aggregates. Meanwhile, AgNPs were significantly stabilized by DOM, indicating that AgNPs may exist as single particles and be suspended in natural water for a long time or delivered far distances. Dissolution (ion release) kinetics of AgNPs in sunlit DOM-rich water showed that dissolved Ag concentration increased gradually first and then suddenly decreased with external light irradiation, along with the regeneration of new tiny AgNPs. pH variation and addition of Ca(2+) and Mg(2+) within environmental levels did not affect the tendency, showing that this phenomenon was general in real aquatic systems. Given that a great number of studies have proven the toxicity of dissolved Ag (commonly regarded as the source of AgNP toxicity) to many aquatic organisms, our finding that the effect of DOM and sunlight on AgNP dissolution can regulate AgNP toxicity under these conditions is important. The fact that the release of Ag(+) and regeneration of AgNPs could both happen in sunlit DOM-rich water implies that previous results of toxicity studies gained by focusing on the original nature of AgNPs should be reconsidered and highlights the necessity to monitor the fate and toxicity of AgNPs under more environmentally relevant conditions.


Assuntos
Nanopartículas Metálicas/química , Povidona/química , Prata/química , Poluentes Químicos da Água/química , Cálcio/química , Cloretos/química , Magnésio/química , Nanopartículas Metálicas/efeitos da radiação , Oxirredução , Povidona/efeitos da radiação , Prata/efeitos da radiação , Sulfetos/química , Luz Solar , Poluentes Químicos da Água/efeitos da radiação
3.
Water Res ; 71: 11-20, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25577691

RESUMO

Given the wide presence of heterogeneous natural organic matter (NOM) and metal ions (Na(+)/Ca(2+)/Mg(2+)), as well as their significant role in governing nanoparticle stability in aqueous environments, it is of great importance to understand how the molecular weight (MW)-dependent physicochemical properties of NOM impact fundamental transportation processes like the aggregation of engineered nanoparticles (ENPs) in the presence of Na(+)/Ca(2+)/Mg(2+). Here, we report on the aggregation behavior of a model ENP, fullerene nanoparticles (nC60) in the presence of five MW fractions of Suwannee River NOM (Mf-SRNOMs, separated by ultrafiltration techniques) and three electrolytes (NaCl, CaCl2 and MgCl2). We found that in all NaCl treatments and low concentration CaCl2/MgCl2 treatments, the enhancement of nC60 stability positively correlated with the MW of Mf-SRNOMs. Whereas, the stability efficiency of identical Mf-SRNOM in different electrolytes followed an order of NaCl > MgCl2 > CaCl2, and the enhanced attachment of nC60-SRNOM associations was observed in high MW Mf-SRNOM (SRNOM>100 kD and SRNOM 30-100 kD) at high concentration CaCl2/MgCl2. Our results indicate that although the high MW NOM with large humic-like material is the key component for stabilizing nC60 in monovalent electrolyte, it could play a reversed role in promoting the attachment of nC60, especially in long term aggregations and at high concentrations of divalent cations. Therefore, a detailed understanding of the effects of heterogeneous NOM on the aggregation of ENPs should be highly valued, and properly assessed against different cation species and concentrations.


Assuntos
Fulerenos/química , Substâncias Húmicas/análise , Compostos Orgânicos/química , Cloreto de Cálcio/química , Eletrólitos , Água Doce/química , Cloreto de Magnésio/química , Peso Molecular , Nanopartículas/química , Cloreto de Sódio/química , Poluentes Químicos da Água/química
4.
Sci Rep ; 5: 9674, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25858866

RESUMO

It is still not very clear what roles the various Ag species play in the toxicity of silver nanoparticles (AgNPs). In this study, we found that traditional exposure media result in uncontrollable but consistent physicochemical transformation of AgNPs, causing artifacts in determination of median lethal concentration (LC50) and hindering the identification of Ag species responsible for the acute toxicity of AgNPs to Daphnia magna. This obstacle was overcome by using 8 h exposure in 0.1 mmol L(-1) NaNO3 medium, in which we measured the 8-h LC50 of seven AgNPs with different sizes and coatings, and determined the concentrations of various Ag species. The LC50 as free Ag(+) of the seven AgNPs (0.37-0.44 µg L(-1)) agreed very well with that of AgNO3 (0.40 µg L(-1)), and showed the lowest value compared to that as total Ag, total Ag(+), and dissolved Ag, demonstrating free Ag(+) is exclusively responsible for the acute toxicity of AgNPs to D. magna, while other Ag species in AgNPs have no contribution to the acute toxicity. Our results demonstrated the great importance of developing appropriate exposure media for evaluating risk of nanomaterials.


Assuntos
Daphnia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Prata/química , Prata/toxicidade , Animais , Dose Letal Mediana , Testes de Toxicidade Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA