Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Neural Regen Res ; 18(1): 87-93, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35799514

RESUMO

Normal tension glaucoma (NTG) is a multifactorial optic neuropathy characterized by normal intraocular pressure, progressive retinal ganglion cell (RGC) death, and glaucomatous visual field loss. Recent studies have described the mechanisms underlying the pathogenesis of NTG. In addition to controlling intraocular pressure, neuroprotection and reduction of RGC degeneration may be beneficial therapies for NTG. In this review, we summarized the main regulatory mechanisms of RGC death in NTG, including autophagy, glutamate neurotoxicity, oxidative stress, neuroinflammation, immunity, and vasoconstriction. Autophagy can be induced by retinal hypoxia and axonal damage. In this process, ischemia can cause mutations of optineurin and activate the nuclear factor-kappa B pathway. Glutamate neurotoxicity is induced by the over-stimulation of N-methyl-D-aspartate membrane receptors by glutamate, which occurs in RGCs and induces progressive glaucomatous optic neuropathy. Oxidative stress also participates in NTG-related glaucomatous optic neuropathy. It impairs the mitochondrial and DNA function of RGCs through the apoptosis signal-regulating kinase-JUN N-terminal kinase pathway. Moreover, it increases inflammation and the immune response of RGCs. Endothelin 1 causes endothelial dysfunction and impairment of ocular blood flow, promoting vasospasm and glaucomatous optic neuropathy, as a result of NTG. In conclusion, we discussed research progress on potential options for the protection of RGCs, including TANK binding kinase 1 inhibitors regulating autophagy, N-methyl-D-aspartate receptor antagonists inhibiting glutamate toxicity, ASK1 inhibitors regulating mitochondrial function, and antioxidants inhibiting oxidative stress. In NTG, RGC death is regulated by a network of mechanisms, while various potential targets protect RGCs. Collectively, these findings provide insight into the pathogenesis of NTG and potential therapeutic strategies.

2.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 29(4): 1085-1092, 2021 Aug.
Artigo em Zh | MEDLINE | ID: mdl-34362486

RESUMO

OBJECTIVE: To investigate the effect and molecular mechanism of miR-142-3p to the proliferation, cycle and apoptosis of acute B lymphocytic leukemia (B-ALL) cells by regulating the homeobox gene 5 (HOXA5) expression. METHODS: Real-time fluorescence quantitative PCR was used to detect the expression levels of miR-142-3p and HOXA5 in human B-ALL cell Nalm6 cell line and human B lymphoblast Hmy2-cir cells. Nalm6 was transfected by using liposome transfection technology, miR-142-3p mimic, pcDNA-HOXA5 overexpression plasmid, miR-142-3p mimic+pcDNA-HOXA5 overexpression plasmid, and control. The binding site of HOXA5 and miR-142-3p was predicted according to microRNA.org, and the targeting relationship between miR-142-3p and HOXA5 gene was detected by double luciferase reporter gene experiment. The effect of miR-142-3p to the proliferation of Nalm6 cells was detected using the Cell Counting Box-8 (CCK-8) method and cell clone formation experiments. Flow cytometry was used to detect the effects of miR-142-3p to cell cycle distribution and apoptosis of Nalm6 cells. The expression levels of cell cycle-related proteins, including G1 /S-specific cyclin-D1 (CyclinD1), Cyclin-dependent kinase 4 (CDK4) and B-cell lymphoma/ leukemia-2 protein (BCL-2), BCL-2 related X protein (Bax), cysteine-aspartate-specific protease (Caspase-3) were detected by Western blot. RESULTS: Compared with Hmy2-cir cells, miR-142-3p showed low expression in Nalm6 cells and HOXA5 showed high expression (P<0.05). MiR-142-3p and HOXA5 3'-UTR showed complementary binding regions, the luciferase activity of miR-142-3p mimic and wild-type HOXA5 3'-UTR was significantly lower than that of miR-142-3p negative control and wild-type HOXA5 3'-UTR (P<0.05). The proliferation of Nalm6 cells and the number of cell clones could be inhibited by miR-142-3p mimic after 48 and 72 hours of transfection (P<0.05), which causing G1 phase arrest of Nalm6 cells and inhibiting the expression of CyclinD1 and CDK4 protein (P<0.01), promoting the apoptosis of Nalm6 cells, and inhibiting the expression of BCL-2 protein, moreover, promoting the expression of Bax and Caspase-3 protein (P<0.05). CONCLUSION: MiR-142-3p can inhibit the proliferation of Nalm6 cells by targeting down-regulation the expression of HOXA5, arrest the G1 phase of cells, and promote apoptosis of the cells.


Assuntos
Leucemia de Células B , MicroRNAs , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Genes Homeobox , Proteínas de Homeodomínio/genética , Humanos , Leucemia de Células B/genética , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA