Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 451
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(16): 2975-2987.e10, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35853453

RESUMO

Horizontal gene transfer (HGT) is an important evolutionary force shaping prokaryotic and eukaryotic genomes. HGT-acquired genes have been sporadically reported in insects, a lineage containing >50% of animals. We systematically examined HGT in 218 high-quality genomes of diverse insects and found that they acquired 1,410 genes exhibiting diverse functions, including many not previously reported, via 741 distinct transfers from non-metazoan donors. Lepidopterans had the highest average number of HGT-acquired genes. HGT-acquired genes containing introns exhibited substantially higher expression levels than genes lacking introns, suggesting that intron gains were likely involved in HGT adaptation. Lastly, we used the CRISPR-Cas9 system to edit the prevalent unreported gene LOC105383139, which was transferred into the last common ancestor of moths and butterflies. In diamondback moths, males lacking LOC105383139 courted females significantly less. We conclude that HGT has been a major contributor to insect adaptation.


Assuntos
Borboletas , Transferência Genética Horizontal , Animais , Borboletas/genética , Corte , Evolução Molecular , Masculino , Filogenia
2.
Cell ; 176(6): 1356-1366.e10, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30799038

RESUMO

Operons are a hallmark of bacterial genomes, where they allow concerted expression of functionally related genes as single polycistronic transcripts. They are rare in eukaryotes, where each gene usually drives expression of its own independent messenger RNAs. Here, we report the horizontal operon transfer of a siderophore biosynthesis pathway from relatives of Escherichia coli into a group of budding yeast taxa. We further show that the co-linearly arranged secondary metabolism genes are expressed, exhibit eukaryotic transcriptional features, and enable the sequestration and uptake of iron. After transfer, several genetic changes occurred during subsequent evolution, including the gain of new transcription start sites that were sometimes within protein-coding sequences, acquisition of polyadenylation sites, structural rearrangements, and integration of eukaryotic genes into the cluster. We conclude that the genes were likely acquired as a unit, modified for eukaryotic gene expression, and maintained by selection to adapt to the highly competitive, iron-limited environment.


Assuntos
Eucariotos/genética , Transferência Genética Horizontal/genética , Óperon/genética , Bactérias/genética , Escherichia coli/genética , Células Eucarióticas , Evolução Molecular , Regulação Bacteriana da Expressão Gênica/genética , Genes Bacterianos/genética , Genoma Bacteriano/genética , Genoma Fúngico/genética , Saccharomycetales/genética , Sideróforos/genética
3.
Cell ; 175(6): 1533-1545.e20, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30415838

RESUMO

Budding yeasts (subphylum Saccharomycotina) are found in every biome and are as genetically diverse as plants or animals. To understand budding yeast evolution, we analyzed the genomes of 332 yeast species, including 220 newly sequenced ones, which represent nearly one-third of all known budding yeast diversity. Here, we establish a robust genus-level phylogeny comprising 12 major clades, infer the timescale of diversification from the Devonian period to the present, quantify horizontal gene transfer (HGT), and reconstruct the evolution of 45 metabolic traits and the metabolic toolkit of the budding yeast common ancestor (BYCA). We infer that BYCA was metabolically complex and chronicle the tempo and mode of genomic and phenotypic evolution across the subphylum, which is characterized by very low HGT levels and widespread losses of traits and the genes that control them. More generally, our results argue that reductive evolution is a major mode of evolutionary diversification.


Assuntos
Evolução Molecular , Transferência Genética Horizontal , Genoma Fúngico , Filogenia , Saccharomycetales/classificação , Saccharomycetales/genética
4.
Nat Rev Genet ; 24(12): 834-850, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37369847

RESUMO

Genome-scale data and the development of novel statistical phylogenetic approaches have greatly aided the reconstruction of a broad sketch of the tree of life and resolved many of its branches. However, incongruence - the inference of conflicting evolutionary histories - remains pervasive in phylogenomic data, hampering our ability to reconstruct and interpret the tree of life. Biological factors, such as incomplete lineage sorting, horizontal gene transfer, hybridization, introgression, recombination and convergent molecular evolution, can lead to gene phylogenies that differ from the species tree. In addition, analytical factors, including stochastic, systematic and treatment errors, can drive incongruence. Here, we review these factors, discuss methodological advances to identify and handle incongruence, and highlight avenues for future research.


Assuntos
Evolução Biológica , Genoma , Filogenia , Evolução Molecular , Hibridização Genética
5.
Plant Cell ; 36(5): 1637-1654, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38114096

RESUMO

MicroRNAs (miRNAs) are a class of nonprotein-coding short transcripts that provide a layer of post-transcriptional regulation essential to many plant biological processes. MiR858, which targets the transcripts of MYB transcription factors, can affect a range of secondary metabolic processes. Although miR858 and its 187-nt precursor have been well studied in Arabidopsis (Arabidopsis thaliana), a systematic investigation of miR858 precursors and their functions across plant species is lacking due to a problem in identifying the transcripts that generate this subclass. By re-evaluating the transcript of miR858 and relaxing the length cut-off for identifying hairpins, we found in kiwifruit (Actinidia chinensis) that miR858 has long-loop hairpins (1,100 to 2,100 nt), whose intervening sequences between miRNA generating complementary sites were longer than all previously reported miRNA hairpins. Importantly, these precursors of miR858 containing long-loop hairpins (termed MIR858L) are widespread in seed plants including Arabidopsis, varying between 350 and 5,500 nt. Moreover, we showed that MIR858L has a greater impact on proanthocyanidin and flavonol levels in both Arabidopsis and kiwifruit. We suggest that an active MIR858L-MYB regulatory module appeared in the transition of early land plants to large upright flowering plants, making a key contribution to plant secondary metabolism.


Assuntos
Actinidia , Arabidopsis , Regulação da Expressão Gênica de Plantas , MicroRNAs , RNA de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Actinidia/genética , Actinidia/metabolismo , Arabidopsis/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Sequência de Bases
6.
PLoS Biol ; 22(9): e3002794, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39283949

RESUMO

Ancient divergences within Opisthokonta-a major lineage that includes organisms in the kingdoms Animalia, Fungi, and their unicellular relatives-remain contentious. To assess progress toward a genome-scale Opisthokonta phylogeny, we conducted the most taxon rich phylogenomic analysis using sets of genes inferred with different orthology inference methods and established the geological timeline of Opisthokonta diversification. We also conducted sensitivity analysis by subsampling genes or taxa from the full data matrix based on filtering criteria previously shown to improve phylogenomic inference. We found that approximately 85% of internal branches were congruent across data matrices and the approaches used. Notably, the use of different orthology inference methods was a substantial contributor to the observed incongruence: analyses using the same set of orthologs showed high congruence of 97% to 98%, whereas different sets of orthologs resulted in somewhat lower congruence (87% to 91%). Examination of unicellular Holozoa relationships suggests that the instability observed across varying gene sets may stem from weak phylogenetic signals. Our results provide a comprehensive Opisthokonta phylogenomic framework that will be useful for illuminating ancient evolutionary episodes concerning the origin and diversification of the 2 major eukaryotic kingdoms and emphasize the importance of investigating effects of orthology inference on phylogenetic analyses to resolve ancient divergences.


Assuntos
Genoma , Filogenia , Genoma/genética , Animais , Evolução Molecular , Genômica/métodos , Fungos/genética , Fungos/classificação
7.
PLoS Biol ; 22(9): e3002832, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39312572

RESUMO

Many distantly related organisms have convergently evolved traits and lifestyles that enable them to live in similar ecological environments. However, the extent of phenotypic convergence evolving through the same or distinct genetic trajectories remains an open question. Here, we leverage a comprehensive dataset of genomic and phenotypic data from 1,049 yeast species in the subphylum Saccharomycotina (Kingdom Fungi, Phylum Ascomycota) to explore signatures of convergent evolution in cactophilic yeasts, ecological specialists associated with cacti. We inferred that the ecological association of yeasts with cacti arose independently approximately 17 times. Using a machine learning-based approach, we further found that cactophily can be predicted with 76% accuracy from both functional genomic and phenotypic data. The most informative feature for predicting cactophily was thermotolerance, which we found to be likely associated with altered evolutionary rates of genes impacting the cell envelope in several cactophilic lineages. We also identified horizontal gene transfer and duplication events of plant cell wall-degrading enzymes in distantly related cactophilic clades, suggesting that putatively adaptive traits evolved independently through disparate molecular mechanisms. Notably, we found that multiple cactophilic species and their close relatives have been reported as emerging human opportunistic pathogens, suggesting that the cactophilic lifestyle-and perhaps more generally lifestyles favoring thermotolerance-might preadapt yeasts to cause human disease. This work underscores the potential of a multifaceted approach involving high-throughput genomic and phenotypic data to shed light onto ecological adaptation and highlights how convergent evolution to wild environments could facilitate the transition to human pathogenicity.


Assuntos
Cactaceae , Cactaceae/microbiologia , Cactaceae/genética , Filogenia , Leveduras/genética , Genoma Fúngico/genética , Evolução Biológica , Evolução Molecular , Fenótipo , Transferência Genética Horizontal , Termotolerância/genética , Ascomicetos/genética , Ascomicetos/patogenicidade , Aprendizado de Máquina
8.
Proc Natl Acad Sci U S A ; 121(18): e2315314121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38669185

RESUMO

How genomic differences contribute to phenotypic differences is a major question in biology. The recently characterized genomes, isolation environments, and qualitative patterns of growth on 122 sources and conditions of 1,154 strains from 1,049 fungal species (nearly all known) in the yeast subphylum Saccharomycotina provide a powerful, yet complex, dataset for addressing this question. We used a random forest algorithm trained on these genomic, metabolic, and environmental data to predict growth on several carbon sources with high accuracy. Known structural genes involved in assimilation of these sources and presence/absence patterns of growth in other sources were important features contributing to prediction accuracy. By further examining growth on galactose, we found that it can be predicted with high accuracy from either genomic (92.2%) or growth data (82.6%) but not from isolation environment data (65.6%). Prediction accuracy was even higher (93.3%) when we combined genomic and growth data. After the GALactose utilization genes, the most important feature for predicting growth on galactose was growth on galactitol, raising the hypothesis that several species in two orders, Serinales and Pichiales (containing the emerging pathogen Candida auris and the genus Ogataea, respectively), have an alternative galactose utilization pathway because they lack the GAL genes. Growth and biochemical assays confirmed that several of these species utilize galactose through an alternative oxidoreductive D-galactose pathway, rather than the canonical GAL pathway. Machine learning approaches are powerful for investigating the evolution of the yeast genotype-phenotype map, and their application will uncover novel biology, even in well-studied traits.


Assuntos
Galactose , Aprendizado de Máquina , Galactose/metabolismo , Genoma Fúngico , Redes e Vias Metabólicas/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética
9.
Proc Natl Acad Sci U S A ; 121(10): e2316031121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412132

RESUMO

The Saccharomycotina yeasts ("yeasts" hereafter) are a fungal clade of scientific, economic, and medical significance. Yeasts are highly ecologically diverse, found across a broad range of environments in every biome and continent on earth; however, little is known about what rules govern the macroecology of yeast species and their range limits in the wild. Here, we trained machine learning models on 12,816 terrestrial occurrence records and 96 environmental variables to infer global distribution maps at ~1 km2 resolution for 186 yeast species (~15% of described species from 75% of orders) and to test environmental drivers of yeast biogeography and macroecology. We found that predicted yeast diversity hotspots occur in mixed montane forests in temperate climates. Diversity in vegetation type and topography were some of the greatest predictors of yeast species richness, suggesting that microhabitats and environmental clines are key to yeast diversity. We further found that range limits in yeasts are significantly influenced by carbon niche breadth and range overlap with other yeast species, with carbon specialists and species in high-diversity environments exhibiting reduced geographic ranges. Finally, yeasts contravene many long-standing macroecological principles, including the latitudinal diversity gradient, temperature-dependent species richness, and a positive relationship between latitude and range size (Rapoport's rule). These results unveil how the environment governs the global diversity and distribution of species in the yeast subphylum. These high-resolution models of yeast species distributions will facilitate the prediction of economically relevant and emerging pathogenic species under current and future climate scenarios.


Assuntos
Biodiversidade , Ecossistema , Clima , Florestas , Carbono , Leveduras
10.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38415839

RESUMO

Siderophores are crucial for iron-scavenging in microorganisms. While many yeasts can uptake siderophores produced by other organisms, they are typically unable to synthesize siderophores themselves. In contrast, Wickerhamiella/Starmerella (W/S) clade yeasts gained the capacity to make the siderophore enterobactin following the remarkable horizontal acquisition of a bacterial operon enabling enterobactin synthesis. Yet, how these yeasts absorb the iron bound by enterobactin remains unresolved. Here, we demonstrate that Enb1 is the key enterobactin importer in the W/S-clade species Starmerella bombicola. Through phylogenomic analyses, we show that ENB1 is present in all W/S clade yeast species that retained the enterobactin biosynthetic genes. Conversely, it is absent in species that lost the ent genes, except for Starmerella stellata, making this species the only cheater in the W/S clade that can utilize enterobactin without producing it. Through phylogenetic analyses, we infer that ENB1 is a fungal gene that likely existed in the W/S clade prior to the acquisition of the ent genes and subsequently experienced multiple gene losses and duplications. Through phylogenetic topology tests, we show that ENB1 likely underwent horizontal gene transfer from an ancient W/S clade yeast to the order Saccharomycetales, which includes the model yeast Saccharomyces cerevisiae, followed by extensive secondary losses. Taken together, these results suggest that the fungal ENB1 and bacterial ent genes were cooperatively integrated into a functional unit within the W/S clade that enabled adaptation to iron-limited environments. This integrated fungal-bacterial circuit and its dynamic evolution determine the extant distribution of yeast enterobactin producers and cheaters.


Assuntos
Enterobactina , Evolução Molecular , Óperon , Filogenia , Enterobactina/metabolismo , Enterobactina/genética , Sideróforos/metabolismo , Sideróforos/genética , Genes Fúngicos , Saccharomycetales/genética , Saccharomycetales/metabolismo , Transferência Genética Horizontal
11.
Syst Biol ; 73(5): 807-822, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38940001

RESUMO

Maximum likelihood (ML) phylogenetic inference is widely used in phylogenomics. As heuristic searches most likely find suboptimal trees, it is recommended to conduct multiple (e.g., 10) tree searches in phylogenetic analyses. However, beyond its positive role, how and to what extent multiple tree searches aid ML phylogenetic inference remains poorly explored. Here, we found that a random starting tree was not as effective as the BioNJ and parsimony starting trees in inferring the ML gene tree and that RAxML-NG and PhyML were less sensitive to different starting trees than IQ-TREE. We then examined the effect of the number of tree searches on ML tree inference with IQ-TREE and RAxML-NG, by running 100 tree searches on 19,414 gene alignments from 15 animal, plant, and fungal phylogenomic datasets. We found that the number of tree searches substantially impacted the recovery of the best-of-100 ML gene tree topology among 100 searches for a given ML program. In addition, all of the concatenation-based trees were topologically identical if the number of tree searches was ≥10. Quartet-based ASTRAL trees inferred from 1 to 80 tree searches differed topologically from those inferred from 100 tree searches for 6/15 phylogenomic datasets. Finally, our simulations showed that gene alignments with lower difficulty scores had a higher chance of finding the best-of-100 gene tree topology and were more likely to yield the correct trees.


Assuntos
Classificação , Filogenia , Classificação/métodos , Funções Verossimilhança , Animais , Genômica/métodos , Plantas/classificação , Plantas/genética
12.
PLoS Biol ; 20(10): e3001827, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36228036

RESUMO

Molecular evolution studies, such as phylogenomic studies and genome-wide surveys of selection, often rely on gene families of single-copy orthologs (SC-OGs). Large gene families with multiple homologs in 1 or more species-a phenomenon observed among several important families of genes such as transporters and transcription factors-are often ignored because identifying and retrieving SC-OGs nested within them is challenging. To address this issue and increase the number of markers used in molecular evolution studies, we developed OrthoSNAP, a software that uses a phylogenetic framework to simultaneously split gene families into SC-OGs and prune species-specific inparalogs. We term SC-OGs identified by OrthoSNAP as SNAP-OGs because they are identified using a splitting and pruning procedure analogous to snapping branches on a tree. From 415,129 orthologous groups of genes inferred across 7 eukaryotic phylogenomic datasets, we identified 9,821 SC-OGs; using OrthoSNAP on the remaining 405,308 orthologous groups of genes, we identified an additional 10,704 SNAP-OGs. Comparison of SNAP-OGs and SC-OGs revealed that their phylogenetic information content was similar, even in complex datasets that contain a whole-genome duplication, complex patterns of duplication and loss, transcriptome data where each gene typically has multiple transcripts, and contentious branches in the tree of life. OrthoSNAP is useful for increasing the number of markers used in molecular evolution data matrices, a critical step for robustly inferring and exploring the tree of life.


Assuntos
Algoritmos , Evolução Molecular , Filogenia , Linhagem , Fatores de Transcrição
13.
Anal Chem ; 96(2): 876-886, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38165226

RESUMO

Dual-labeled single fluorescent probes are powerful tools for studying autophagy on the molecular scale, yet their development has been hampered by design complexity and a lack of valid strategies. Herein, for the first time, we introduce a combinatorial regulation strategy to fabricate dual-labeled probes for studying autophagy by integrating the specific organelle-targeting group and the functional fluorescence switch into a pentacyclic pyrylium scaffold (latent dual-target scaffold). For proof of concept, we prepared a range of dual-labeled probes (TMOs) that display different emission colors in duple organelles. In these probes, TMO1 and TMO2 enabled the simultaneous two-color visualization of the lysosomes and mitochondria. The other probes (TMO3 and TMO4) discriminatively targeted lysosomes/nucleolus and lysosomes/lipid droplets (LDs) with dual-color emission characteristics, respectively. Intriguingly, by simply connecting the endoplasmic reticulum (ER) targeting group to the pentacyclic pyrylium scaffold, we created the first dual-labeled probe TMO5 for simultaneously labeling lysosomes/ER in distinctive fluorescent colors. Subsequently, using the dual-labeled probe TMO2, drug-induced mitophagy was successfully recorded by evaluating the alterations of multiple mitophagy-related parameters, and the mitophagy defects in a cellular model of Parkinson's disease (PD) were also revealed by simultaneous dual-color/dual-organelle imaging. Further, the probe TMO4 can track the movement of lysosomes and LDs in real time and monitor the dynamic process of lipophagy. Therefore, this work not only presents attractive dual-labeled probes to promote the study of organelle interactions during autophagy but also provides a promising combinatorial regulation strategy that may be generalized for designing other dual-labeled probes with multiple organelle combinations.


Assuntos
Corantes Fluorescentes , Organelas , Corantes Fluorescentes/metabolismo , Organelas/metabolismo , Lisossomos/metabolismo , Mitocôndrias , Retículo Endoplasmático , Autofagia
14.
Small ; 20(42): e2401117, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39031811

RESUMO

Surface-enhanced Raman scattering (SERS) imaging integrating photothermal and photodynamic therapy (PTT/PDT) is a promising approach for achieving accurate diagnosis and effective treatment of cancers. However, most available Raman reporters show multiple signals in the fingerprint region, which overlap with background signals from cellular biomolecules. Herein, a 4T1 cell membrane-enveloped gold nanorods-manganese porphyrins system (GMCMs) is designed and successfully fabricated as a biomimetic theranostic nanoplatform. Manganese porphyrins are adsorbed on the surface of Au nanorods via the terminal alkynyl group. Cell membrane encapsulation protects the manganese porphyrins from falling off the gold nanorods. The biomimetic GMCMs confirm specific homologous targeting to 4T1 cells with good dispersibility, excellent photoacoustic (PA) imaging properties, and preferable photothermal and 1O2 generation performance. GMCMs exhibit distinct SERS signals in the silent region without endogenous biomolecule interference both in vitro and in vivo. Manganese ions could not only quench the fluorescence of porphyrins to enhance the SERS imaging effect but also deplete cellular GSH to increase 1O2 yield. Both in vitro and in vivo studies demonstrate that GMCMs effectively eradicate tumors through SERS/PA imaging-guided PTT/PDT. This study provides a feasible strategy for augmenting the Raman imaging effects of the alkynyl group and integrating GSH-depletion to enhance PTT/PDT efficacy.


Assuntos
Ouro , Manganês , Nanotubos , Técnicas Fotoacústicas , Fotoquimioterapia , Porfirinas , Análise Espectral Raman , Ouro/química , Fotoquimioterapia/métodos , Manganês/química , Nanotubos/química , Porfirinas/química , Porfirinas/uso terapêutico , Técnicas Fotoacústicas/métodos , Animais , Linhagem Celular Tumoral , Camundongos , Biomimética/métodos , Materiais Biomiméticos/química
15.
Yeast ; 41(10): 615-628, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39295298

RESUMO

Yeasts in the subphylum Saccharomycotina are found across the globe in disparate ecosystems. A major aim of yeast research is to understand the diversity and evolution of ecological traits, such as carbon metabolic breadth, insect association, and cactophily. This includes studying aspects of ecological traits like genetic architecture or association with other phenotypic traits. Genomic resources in the Saccharomycotina have grown rapidly. Ecological data, however, are still limited for many species, especially those only known from species descriptions where usually only a limited number of strains are studied. Moreover, ecological information is recorded in natural language format limiting high throughput computational analysis. To address these limitations, we developed an ontological framework for the analysis of yeast ecology. A total of 1,088 yeast strains were added to the Ontology of Yeast Environments (OYE) and analyzed in a machine-learning framework to connect genotype to ecology. This framework is flexible and can be extended to additional isolates, species, or environmental sequencing data. Widespread adoption of OYE would greatly aid the study of macroecology in the Saccharomycotina subphylum.


Assuntos
Ecossistema , Ecologia , Ascomicetos/genética , Ascomicetos/classificação , Genótipo , Aprendizado de Máquina , Genoma Fúngico/genética
16.
New Phytol ; 244(2): 694-707, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39166427

RESUMO

Horizontal gene transfer (HGT) is a major driving force in the evolution of prokaryotic and eukaryotic genomes. Despite recent advances in distribution and ecological importance, the extensive pattern, especially in seed plants, and post-transfer adaptation of HGT-acquired genes in land plants remain elusive. We systematically identified 1150 foreign genes in 522 land plant genomes that were likely acquired via at least 322 distinct transfers from nonplant donors and confirmed that recent HGT events were unevenly distributed between seedless and seed plants. HGT-acquired genes evolved to be more similar to native genes in terms of average intron length due to intron gains, and HGT-acquired genes containing introns exhibited higher expression levels than those lacking introns, suggesting that intron gains may be involved in the post-transfer adaptation of HGT in land plants. Functional validation of bacteria-derived gene GuaD in mosses and gymnosperms revealed that the invasion of foreign genes introduced a novel bypass of guanine degradation and resulted in the loss of native pathway genes in some gymnosperms, eventually shaping three major types of guanine metabolism in land plants. We conclude that HGT has played a critical role in land plant evolution.


Assuntos
Embriófitas , Transferência Genética Horizontal , Genes de Plantas , Guanina , Íntrons , Embriófitas/genética , Íntrons/genética , Guanina/metabolismo , Filogenia , Adaptação Fisiológica/genética , Genoma de Planta , Evolução Molecular
17.
Chemistry ; 30(55): e202402019, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38923040

RESUMO

Photoacoustic (PA) tomography is an emerging biomedical imaging technology for precision cancer medicine. Conventional small-molecule PA probes usually exhibit a single PA signal and poor tumor targeting that lack the imaging reliability. Here, we introduce a series of cyanine/hemicyanine interconversion dyes (denoted Cy-HCy) for PA/fluorescent dual-mode probe development that features optimized ratiometric PA imaging and tunable tumor-targeting ability for precise diagnosis and resection of colorectal cancer (CRC). Importantly, Cy-HCy can be presented in cyanine (inherent tumor targeting and long NIR PA wavelength) and hemicyanine (poor tumor targeting and short NIR PA wavelength) by fine-tuning torsion angle and the ingenious transformation between cyanine and hemicyanine through regulation optically tunable group endows the NIR ratiometric PA and tunable tumor-targeting properties. To demonstrate the applicability of Cy-HCy dyes, we designed the first small-molecule tumor-targeting and NIR ratiometric PA probe Cy-HCy-H2S for precise CRC liver metastasis diagnosis, activated by H2S (a CRC biomarker). Using this probe, we not only visualized the subcutaneous tumor and liver metastatic cancers in CRC mouse models but also realized PA and fluorescence image-guided tumor excision. We expect that Cy-HCy will be generalized for creating a wide variety of inherently tumor-targeting NIR ratiometric PA probes in oncological research and practice.


Assuntos
Carbocianinas , Neoplasias Colorretais , Corantes Fluorescentes , Neoplasias Hepáticas , Técnicas Fotoacústicas , Neoplasias Colorretais/patologia , Neoplasias Colorretais/diagnóstico por imagem , Técnicas Fotoacústicas/métodos , Animais , Camundongos , Neoplasias Hepáticas/diagnóstico por imagem , Humanos , Carbocianinas/química , Corantes Fluorescentes/química , Linhagem Celular Tumoral , Imagem Óptica
18.
Chemistry ; 30(23): e202400115, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38369622

RESUMO

Hypoxia is a critical factor for restricting photodynamic therapy (PDT) of tumor, and it becomes increasingly severe with increasing tissue depth. Thus, the relief of deep tumor hypoxia is extremely important to improve the PDT efficacy. Herein, tumor microenvironment (TME)-responsive size-switchable hyaluronic acid-hybridized Ru nanoaggregates (HA@Ru NAs) were developed via screening reaction temperature to alleviate deep tumor hypoxia for improving the tumor-specific PDT by the artful integration multiple bioactivated chemical reactions in situ and receptor-mediated targeting (RMT). In this nanosystem, Ru NPs not only enabled HA@Ru NAs to have near infrared (NIR)-mediated photothermal/photodynamic functions, but also could catalyze endogenous H2O2 to produce O2 in situ. More importantly, hyaluronidase (HAase) overexpressed in the TME could trigger disassembly of HA@Ru NAs via the hydrolysis of HA, offering the smart size switch capability from 60 to 15 nm for enhancing tumor penetration. Moreover, the RMT characteristics of HA ensured that HA@Ru NAs could specially enter CD44-overexpressed tumor cells, enhancing tumor-specific precision of phototherapy. Taken together these distinguishing characteristics, smart HA@Ru NAs successfully realized the relief of deep tumor hypoxia to improve the tumor-specific PDT.

19.
PLoS Biol ; 19(8): e3001365, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34358228

RESUMO

Phylogenomic analyses of hundreds of protein-coding genes aimed at resolving phylogenetic relationships is now a common practice. However, no software currently exists that includes tools for dataset construction and subsequent analysis with diverse validation strategies to assess robustness. Furthermore, there are no publicly available high-quality curated databases designed to assess deep (>100 million years) relationships in the tree of eukaryotes. To address these issues, we developed an easy-to-use software package, PhyloFisher (https://github.com/TheBrownLab/PhyloFisher), written in Python 3. PhyloFisher includes a manually curated database of 240 protein-coding genes from 304 eukaryotic taxa covering known eukaryotic diversity, a novel tool for ortholog selection, and utilities that will perform diverse analyses required by state-of-the-art phylogenomic investigations. Through phylogenetic reconstructions of the tree of eukaryotes and of the Saccharomycetaceae clade of budding yeasts, we demonstrate the utility of the PhyloFisher workflow and the provided starting database to address phylogenetic questions across a large range of evolutionary time points for diverse groups of organisms. We also demonstrate that undetected paralogy can remain in phylogenomic "single-copy orthogroup" datasets constructed using widely accepted methods such as all vs. all BLAST searches followed by Markov Cluster Algorithm (MCL) clustering and application of automated tree pruning algorithms. Finally, we show how the PhyloFisher workflow helps detect inadvertent paralog inclusions, allowing the user to make more informed decisions regarding orthology assignments, leading to a more accurate final dataset.


Assuntos
Eucariotos/genética , Filogenia , Software
20.
BMC Pediatr ; 24(1): 708, 2024 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-39506701

RESUMO

BACKGROUND: The effectiveness of acetated Ringer's solution in pediatric shock has received little attention. This study aimed to assess the clinical outcomes of using compound sodium acetate Ringer's solution (AR) for fluid resuscitation in children with septic shock. METHODS: We retrospectively analyzed the clinical data of children with septic shock admitted to the pediatric intensive care unit of the Affiliated Hospital of Southwest Medical University from December 2019 to January 2023. Based on the resuscitation fluid administered, the participants were categorized into the compound AR and normal saline (NS) groups. We compared blood circulation conditions, internal environment parameters (arterial blood pH, lactic acid, serum sodium, chloride, calcium, magnesium, potassium, and blood glucose), and 28-day clinical outcomes between the two groups. RESULTS: This study included 40 children, with 13 and 27 in the compound AR and NS groups, respectively. The two groups showed no significant differences in sex, age, body weight, body mass index, primary inflammation level, or Pediatric Sequential Organ Failure Assessment on admission. Similarly, no significant difference was observed in resuscitation fluid volume administered during the first hour (compound AR group: 250.00 mL [100.00, 390.00]; NS group: 250.00 mL [100.00, 500.00]). The total amount of crystalloid and colloid fluids administered within 24 h, vasoactive drug use, and blood pressure recovery post-resuscitation did not significantly differ between the groups. However, at 6 h post-resuscitation, the compound AR had considerably lower lactate level than the NS group (1.12 vs. 2.20 mmol/L). There were no significant differences in arterial blood pH, serum sodium, chloride, calcium, magnesium, potassium, and blood glucose levels between the groups. After treatment, in the compound AR group, 3 patients died, 2 improved, and 8 were cured. In the NS group, 7 patients died, 8 improved, and 12 were cured. The 28-day treatment outcomes (mortality rate, improvement rate, cure rate, or side effects) showed no significant differences between the groups. CONCLUSIONS: Compound AR was as effective as NS as a resuscitation fluid in pediatric septic shock, demonstrating similar intravascular volume restoration and hemodynamic stability maintenance. However, it caused a faster decline in arterial lactate levels without obvious side effects.


Assuntos
Hidratação , Ressuscitação , Choque Séptico , Humanos , Estudos Retrospectivos , Hidratação/métodos , Masculino , Feminino , Choque Séptico/terapia , Choque Séptico/tratamento farmacológico , Pré-Escolar , Criança , Ressuscitação/métodos , Lactente , Soluções Isotônicas/uso terapêutico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA