Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Infect Drug Resist ; 16: 4789-4806, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520454

RESUMO

Background: Antimicrobial peptides (AMPs) can act on the bacterial cell membrane to play an antibacterial role in types of drug-resistant bacteria. Therefore, AMPs have attracted more and more attention in the treatment of drug-resistant bacteria. Methods: Bibliometric analysis was employed to sort out the development and trends in the research of AMPs in the treatment of drug-resistant bacteria and map the knowledge structure for scholars. Results: Since 2010, the publications and citations in this field have exploded, indicating a growing global interest in the field of AMPs for the treatment of drug-resistant bacteria. And as major countries in this field, China and the USA had conducted very in-depth exchanges and cooperation, which had injected a steady stream of impetus into this field. Both old and new scholars have made efforts, and related fields have developed rapidly, especially in the synthesis and improvement of novel AMPs. In recent years, research directions in the field of AMPs for the treatment of drug-resistant bacteria gradually focused on the practical application, optimization of drug delivery mode, optimization of synthesis mode, screening of new AMPs and other fields, indicating that the relevant research results of AMPs for the treatment of drug-resistant bacteria had entered the actual clinical stage, with higher practical significance. Conclusion: The research history, global research status, future research hotspots, and trends of the research of AMPs in the treatment of drug-resistant bacteria were discussed in depth in this study, which can provide research references and inspiration for researchers inside and outside the related field.

2.
Microorganisms ; 11(5)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37317214

RESUMO

The microbiota is present in many parts of the human body and plays essential roles. The most typical case is the occurrence and development of cancer. Pancreatic cancer (PC), one of the most aggressive and lethal types of cancer, has recently attracted the attention of researchers. Recent research has revealed that the microbiota regulates PC carcinogenesis via an altered immune response. Specifically, the microbiota, in several sites, including the oral cavity, gastrointestinal tract, and pancreatic tissue, along with the numerous small molecules and metabolites it produces, influences cancer progression and treatment by activating oncogenic signaling, enhancing oncogenic metabolic pathways, altering cancer cell proliferation, and triggering chronic inflammation that suppresses tumor immunity. Diagnostics and treatments based on or in combination with the microbiota offer novel insights to improve efficiency compared with existing therapies.

3.
Front Endocrinol (Lausanne) ; 13: 865655, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399954

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant cancers. It is characterized by stromal richness, lack of blood supply and special metabolic reprogramming in the tumor microenvironment, which is difficult to treat and easy to metastase. Great efforts have been made to develop new drugs which can pass through the stroma and are more effective than traditional chemotherapeutics, such as ferroptosis inducers-Erastin and RSL-3. As current anti-angiogenic therapy drugs alone are suboptimal for PDAC, novel vascular disruption agents in combination with ferroptosis inducers might provide a possible solution. Here, we designed human platelet vesicles (PVs) to camouflage RSL-3 to enhance drug uptake rate by tumor cells and circulation time in vivo, deteriorating the tumor vessels and resulting in tumor embolism to cut the nutrient supply as well as causing cell death due to excessive lipid peroxidation. The RSL-3@PVs can also cause the classic ferroptosis-related change of mitochondrial morphology, with changes in cellular redox levels. Besides that, RSL-3@PVs has been proved to have great biological safety profile in vitro and in vivo. This study demonstrates the promising potential of integrating PVs and RSL-3 as a combination therapy for improving the outcome of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Ferroptose , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/metabolismo , Humanos , Imunoterapia , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA