Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39086116

RESUMO

OBJECTIVES: To identify novel genetic elements facilitating the horizontal transfer of the oxazolidinone/phenicol resistance gene optrA and the pleuromutilin-lincosamide-streptogramin A resistance gene lsa(E) in Streptococcus suis. METHODS: The complete genomes of S. suis HB18 and two transconjugants were obtained using both the Illumina and Nanopore platforms. MICs were determined by broth microdilution. Inverse PCR was performed to identify circular forms of the novel unconventional circularizable structure (UCS), genomic island (GI) and integrative and conjugative element (ICE). Conjugation experiments assessed the transferability of optrA and lsa(E) genes in S. suis. RESULTS: S. suis HB18 carried a multiresistance gene cluster optrA-lsa(E)-lnu(B)-aphA-aadE-spw. This gene cluster, flanked by intact and truncated erm(B) in the same orientation, resided on a novel ICESsuHB18. Inverse PCR revealed the existence of a novel UCS, named UCS-optrA + lsa(E), which could excise the gene cluster optrA-lsa(E)-lnu(B)-aphA-aadE-spw and one copy of erm(B) from ICESsuHB18. Two transconjugants with different characteristics were obtained. In transconjugant T-JH-GI, UCS-optrA + lsa(E) excised from ICESsuHB18 inserted into the erm(B)-positive GI, designated GISsuHB18, generating the novel GISsuHB18-1. Meanwhile, in T-JH-ICE, genetic rearrangement events occurred in ICESsuHB18 and GISsuHB18, forming the novel ICESsuHB18-1. CONCLUSIONS: This is the first report demonstrating the functionally active UCS-optrA + lsa(E) excising from ICESsuHB18 and inserting into the erm(B)-positive GISsuHB18 during the conjugation process. The location of optrA and lsa(E) on a multiresistance UCS enhances its persistence and dissemination.

2.
Curr Opin Gastroenterol ; 39(1): 9-15, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36504031

RESUMO

PURPOSE OF REVIEW: Campylobacter is a major foodborne pathogen that infects the human intestinal tract. This review discusses the current status of antibiotic resistance, transmission of antibiotic resistance genes, and strategies to combat the global Campylobacter epidemic. RECENT FINDINGS: Over the past 18 months, articles on Campylobacter antibiotic resistance have been published in ∼39 countries. Antibiotic-resistant Campylobacter have been detected in humans, livestock, poultry, wild animals, the environment, and food. Campylobacter spp. are resistant to a wide spectrum of antimicrobial agents, including the antibiotics quinolones, macrolides, tetracyclines, aminoglycosides, and chloramphenicols. Multidrug resistance is a globally emerging problem. Continuous antibiotic pressure promotes the spread of drug-resistant Campylobacter spp. Additionally, Campylobacter is well adapted to acquiring foreign drug resistance genes, including ermB, optrA, fexA, and cfrC, which are usually acquired from gram-positive bacteria. SUMMARY: The widespread use of antibiotics has caused a global epidemic of drug-resistant Campylobacter infections. Many countries are actively reducing the use of antibiotics and adopting alternatives in the livestock and poultry industries to control the spread of drug-resistant Campylobacter spp.


Assuntos
Infecções por Campylobacter , Campylobacter , Animais , Humanos , Resistência Microbiana a Medicamentos , Infecções por Campylobacter/tratamento farmacológico , Infecções por Campylobacter/epidemiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Macrolídeos
3.
J Antimicrob Chemother ; 77(6): 1557-1560, 2022 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-35296903

RESUMO

OBJECTIVES: Recently, epidemiological research has shown an unusually high prevalence of telithromycin-resistant Campylobacter. This study was designed to investigate the potential resistance mechanism of telithromycin resistance in Campylobacter. METHODS: A total of 122 Campylobacter isolates of chicken origin collected in 2019 from three regions of China were tested for susceptibility to telithromycin. The potential mechanism of resistance to telithromycin in Campylobacter was revealed through WGS analysis and natural transformation. RESULTS: In this study, 51.3% (61/119) of Campylobacter coli and 100.0% (3/3) of Campylobacter jejuni were resistant to telithromycin. erm(B) or A2075G mutation in 23S rRNA (23S_A2075G) was identified in the telithromycin-resistant C. coli. Cloning of the erm(B) or 23S_A2075G into C. jejuni NCTC 11168 resulted in a 256-fold increase in the MIC of telithromycin. MLST results indicated that various STs were involved in the dissemination of 23S_A2075G and erm(B). Phylogenetic analysis showed that the C. coli isolates with 23S_A2075G and erm(B) from chickens and humans were closely related. CONCLUSIONS: 23S_A2075G and erm(B), which have been widely spread in different genotypes of C. coli isolated from animals and humans, could mediate high levels of resistance to telithromycin in C. coli. C. coli containing 23S_A2075G or erm(B) are clonally related and have the potential to spread zoonotic diseases.


Assuntos
Campylobacter coli , Campylobacter jejuni , Campylobacter , Animais , Antibacterianos/farmacologia , Campylobacter coli/genética , Campylobacter jejuni/genética , Galinhas , Farmacorresistência Bacteriana/genética , Cetolídeos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Mutação , Filogenia , RNA Ribossômico 23S/genética
4.
J Antimicrob Chemother ; 77(7): 1856-1861, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35445265

RESUMO

OBJECTIVES: To characterize a clinical Klebsiella pneumoniae isolate from China co-harbouring tet(X4), blaOXA-181 and the aerobactin operon on an IncFIBk-FII-X3-ColKP3 hybrid plasmid. METHODS: A tigecycline-resistant strain was recovered from the intestinal sample of a patient. It was subjected to antimicrobial susceptibility testing, conjugation assay, virulence testing, WGS, bioinformatics analysis, plasmid stability testing and fitness cost testing. RESULTS: The strain K. pneumoniae T877 was resistant to tigecycline, intermediate to piperacillin/tazobactam and ertapenem, and positive for tet(X), blaOXA-181 and the virulence-associated operon iutAiucABCD, which were located on the same plasmid, named pKPT877-hybrid. It was 99.96% identical to the IncFIBk-FII plasmid pSCH6109-Vir (accession number CP050860) from K. pneumoniae strain SCH6109 at 96% coverage with the absence of a 50 kb region on pKPT877-hybrid; this region was highly homologous to the 51 kb IncX3-ColKP3-type, blaOXA-181-carrying plasmid pOXA181-191773 (accession number CP080367). Plasmid pKPT877-hybrid was conjugatively transferable to the ST11 K. pneumoniae strains FJ8 and KP04. pKPT877-hybrid did not have a significant impact on the fitness cost and could be maintained stably in T877. CONCLUSIONS: We report for the first time (to the best of our knowledge) the co-transfer of last-line antibiotic resistance determinants [tet(X4) and blaOXA-181] and the aerobactin operon (iutAiucABCD) by a mobile IncFIBk-FII-X3-ColKP3 hybrid plasmid, which can be stably maintained in K. pneumoniae strains, even in the absence of antibiotic selective pressure. Once the plasmid transfers to a K. pneumoniae with porin deficiency, the strain might have high levels of resistance to carbapenems and tigecycline, which are the last line of defence against infections. Heightened and continuous efforts are needed to control its dissemination.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Testes de Sensibilidade Microbiana , Óperon , Plasmídeos/genética , Tigeciclina , Virulência/genética , beta-Lactamases/genética
5.
Saudi Pharm J ; 30(6): 849-855, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35812137

RESUMO

The emergence of carbapenem-resistant organisms posed considerable threat to global health while only limited treatment options are available and led to efforts to discover a novel way to treat them. To evaluate in vitro synergistic activity of meropenem plus ertapenem, a total of 203 carbapenem-resistant strains, collected from 12 provinces and municipalities in China, were examined with a dual carbapenem combination therapy. The statistical software R was used for analysis. Two hundred and one (201) of carbapenem-resistant strains mainly produced four types of carbapenemase: KPC-2 (n = 142, 69.95%), OXA-232 (n = 7, 3.45%), NDM (n = 38, 18.72%; 36 NDM-1, 1 NDM-4, 1 NDM-5), and IMP (n = 15, 7.39%; 1 IMP-26, 10 IMP-30, 4 IMP-4). Fifty-one out of two hundred and three (51/203 or 25.12%) of the examined strains showed a synergistic effect for the meropenem plus ertapenem combination throughout the checkerboard method, while only three isolates showed potential clinically relevant synergy (3/203, 1.48%). An additive effect was observed in 55/203 (27.09%) of the examined strains. Ninety-seven of the examined isolates (47.78%) showed fractional inhibitory concentration (FIC) greater or equal to 2 (indicating antagonism). The synergistic activity of meropenem plus ertapenem combination suggests this combination can be a possible way to treat the infection caused by the carbapenem-resistant organisms, especially for IMP or NDM producer with a lesser minimum inhibitory concentration (MIC) and the infected individual who was not recommended to use colistin or tigecycline.

6.
Artigo em Inglês | MEDLINE | ID: mdl-33046490

RESUMO

Increasing mobile colistin resistance, mediated by the mcr gene family, in Enterobacteriaceae has become a global concern. Among the 10 reported mcr genes, mcr-8 was first identified in Klebsiella pneumoniae, which could cause severe infections with high mortality. Information about the prevalence and genetic context of mcr-8 is still lacking. In this study, we found that mcr-8 was present in 9.83% of K. pneumoniae isolates of chicken origin. S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and Southern blotting showed that the mcr-8 gene was located on a plasmid in all of the isolates. The genetic context of the plasmids exhibited considerable diversity from the whole-genome sequence through Illumina and MinION long-read sequencing. Mutations in two-component systems may function synergistically with mcr-8, resulting in extremely high resistance to colistin. In addition to colistin resistance, these plasmids also contained genes conferring resistance to beta-lactams, tetracycline, aminoglycosides, sulfonamides, macrolides, chloramphenicol, and florfenicol. Therefore, these findings indicate that the genetic context of mcr-8 is heterogeneous and diverse and that mcr-8 and certain chromosomal mechanisms jointly contribute to high-level colistin resistance in K. pneumoniae strains, which provides new insights into the resistance mechanisms of K. pneumoniae.


Assuntos
Proteínas de Escherichia coli , Klebsiella pneumoniae , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Galinhas , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli , Proteínas de Escherichia coli/genética , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Plasmídeos
7.
Artigo em Inglês | MEDLINE | ID: mdl-32366706

RESUMO

Florfenicol belongs to a class of phenicol antimicrobials widely used as feed additives and for the treatment of respiratory infections. In recent years, increasing resistance to florfenicol has been reported in Campylobacter spp., the leading foodborne enteric pathogens causing diarrheal diseases worldwide. Here, we reported the identification of fexA, a novel mobile florfenicol resistance gene in Campylobacter Of the 100 Campylobacter jejuni strains isolated from poultry in Zhejiang, China, 9 were shown to be fexA positive, and their whole-genome sequences were further determined by integration of Illumina short-read and MinION long-read sequencing. The fexA gene was found in the plasmid of one strain and chromosomes of eight strains, and its location was verified by S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and Southern blotting. Based on comparative analysis, the fexA gene was located within a region with the tet(L)-fexA-catA-tet(O) gene arrangement, demonstrated to be successfully transferable among C. jejuni strains. Functional cloning indicated that acquisition of the single fexA gene significantly increased resistance to florfenicol, whereas its inactivation resulted in increased susceptibility to florfenicol in Campylobacter Taken together, these results indicated that the emerging fexA resistance is horizontally transferable, which might greatly facilitate the adaptation of Campylobacter in food production environments where florfenicols are frequently used.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Campylobacter , Animais , Antibacterianos/farmacologia , Campylobacter/genética , Infecções por Campylobacter/tratamento farmacológico , Campylobacter jejuni/genética , Galinhas , China , Eletroforese em Gel de Campo Pulsado , Testes de Sensibilidade Microbiana , Tianfenicol/análogos & derivados
8.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32816739

RESUMO

We isolated 47 Acinetobacter strains carrying tet(X3) and 4 ST767 E. coli strains carrying tet(X4) from 296 rectal swab samples from dairy cows on a Chinese farm. tet(X3) was located on chromosomes or diverse plasmids, and tet(X4) was located on IncFIBκ/FIA(HI1)/X1 nontransferable plasmid. The coexistence of tet(X3) and carbapenemase genes, including blaOXA-58 and blaNDM-1, was detected in 9 Acinetobacter spp. These findings suggested that the use of tetracycline and other antibiotics in food production warrants urgent attention.


Assuntos
Cromossomos , Escherichia coli , Animais , Bovinos , China , Escherichia coli/genética , Fazendas , Feminino , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Tigeciclina/farmacologia
9.
J Antimicrob Chemother ; 75(11): 3087-3095, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32514524

RESUMO

The identification of the first mobile colistin resistance (MCR) gene, mcr-1, in 2015 triggered a rash of mcr screening reports. Subsequently, nine MCR-family genes and their variants have been described. However, a comprehensive overview concerning the epidemiology of the whole MCR family, which is essential for facilitating rational interventions against mcr dissemination, is lacking. Here, based on the National Database of Antibiotic Resistant Organisms and published studies, we have summarized the latest epidemiological characteristics of the mcr genes.


Assuntos
Colistina , Proteínas de Escherichia coli , Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli , Proteínas de Escherichia coli/genética
10.
J Antimicrob Chemother ; 75(8): 2059-2065, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32417908

RESUMO

BACKGROUND: Plasmid-mediated mechanisms of drug resistance accelerate the spread of polymyxin resistance, leaving clinicians with few or no antibacterial options for the treatment of infections caused by MDR bacteria, especially carbapenemase-producing strains. OBJECTIVES: To evaluate the associations among promoter sequence variation, mcr-1 expression, host factors and levels of colistin resistance and to propose antisense agents such as peptide nucleic acids (PNAs) targeting mcr-1 as a tool to restore colistin susceptibility through modulation of MCR-1 expression in Escherichia coli. METHODS: A ß-galactosidase assay was performed to study mcr-1 promoter activity. Quantitative real-time PCR and western blot assays were used to identify the expression level of MCR-1 in WT strains and transformants. Three PNAs targeting different regions of mcr-1 were designed and synthesized to determine whether they can effectively inhibit MCR-1 expression. MIC was measured to test colistin susceptibility in the presence or absence of PNA-1 in mcr-1-carrying E. coli. RESULTS: Variation in the mcr-1 promoter sequence and host species affect promoter activity, MCR-1 expression levels and colistin MICs. One PNA targeting the ribosome-binding site fully inhibited the expression of mcr-1 at a concentration of 4 µM, resulting in significantly increased susceptibility to colistin. The MIC90 of colistin decreased from 8 to 2 mg/L (P < 0.05) in the presence of 4 µM PNA. CONCLUSIONS: These findings suggest that the antisense approach is a possible strategy to combat mcr-1-mediated resistance as well as other causes of emerging global resistance.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Ácidos Nucleicos Peptídicos , Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Humanos , Testes de Sensibilidade Microbiana , Ácidos Nucleicos Peptídicos/genética , Ácidos Nucleicos Peptídicos/farmacologia , Plasmídeos/genética
11.
J Antimicrob Chemother ; 75(9): 2485-2494, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32516364

RESUMO

OBJECTIVES: To investigate the nationwide prevalence of mcr-1-positive Klebsiella pneumoniae (MCRPKP) strains among healthy adults in China and identify their phenotypic and genomic characterizations. METHODS: A total of 7401 rectal swab samples were collected from healthy individuals in 30 hospitals located in 30 provinces and municipalities of mainland China in 2016. Colistin-resistant bacteria were enriched in colistin-supplemented lysogeny broth. MCRPKP strains were isolated and characterized with MALDI-TOF MS, PCR analysis and antimicrobial susceptibility testing. The genomic characteristics of MCRPKP strains were determined by WGS and bioinformatics analysis. RESULTS: Seven MCRPKP strains and one mcr-1-positive Klebsiella variicola strain were selectively isolated from six locales (three from Henan and one from each of Tianjin, Jiangxi, Yunnan, Gansu and Tibet). Antimicrobial susceptibility testing results indicated that all mcr-1-positive strains were susceptible to meropenem, aztreonam and ceftazidime/avibactam. WGS analysis suggested these strains belonged to seven distinct STs: ST15, ST1425, ST1462, ST273, ST307, ST391 and ST37-SLV. mcr-1 genes were carried by diverse plasmids, including IncHI2 (n = 3), IncX4 (n = 2), IncHI2/IncN (n = 1), IncFIB (n = 1) and one other plasmid type. Two ST15 strains harboured both mcr-1 and mcr-8 genes, which has not been reported before. CONCLUSIONS: Our data indicated a low prevalence of mcr-1-positive Klebsiella strains (0.11%, 8/7401) in healthy individuals in mainland China and most of these strains remained susceptible to clinically important antibiotics. The prevalence and coexistence of mcr-1 and mcr-8 in K. pneumoniae may further threaten public health through either the food chain or environmental routes.


Assuntos
Proteínas de Escherichia coli , Klebsiella pneumoniae , Adulto , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , China/epidemiologia , Colistina/farmacologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Humanos , Klebsiella , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Plasmídeos , Prevalência
12.
J Antimicrob Chemother ; 75(10): 2769-2772, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32620964

RESUMO

OBJECTIVES: This study was designed to understand the prevalence of antibiotic-resistant bacteria in the Beijing subway environment and the potential transmission of carbapenem-resistant Enterobacteriaceae in a public transportation environment. METHODS: Carbapenem-resistant isolates were selected on brain heart infusion agar supplemented with meropenem (0.5 mg/L) and antimicrobial susceptibility testing was conducted using the broth microdilution method. WGS analyses were conducted for 11 Klebsiella pneumoniae isolates to identify resistance genes. The genetic relationships among the isolates were evaluated by MLST and PFGE. RESULTS: We identified 11 carbapenem-resistant K. pneumoniae isolates from the Beijing subway environment. WGS revealed three STs among the 11 isolates, with 9 isolates classified as ST726 and containing a blaNDM-5-carrying IncX3 plasmid. The genetic environment of blaNDM-5 was very similar to that observed in other blaNDM-5-containing clinical isolates. CONCLUSIONS: The presence of carbapenem-resistant Enterobacteriaceae in a public transportation environment is concerning and indicates that regular antimicrobial resistance surveillance is urgent and necessary.


Assuntos
Antibacterianos , Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos/farmacologia , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Saúde Pública , Meios de Transporte , beta-Lactamases
13.
BMC Microbiol ; 20(1): 174, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32571294

RESUMO

BACKGROUND: Tigecycline is a last-resort antibiotic used to treat severe infections caused by extensively drug-resistant bacteria. Recently, novel tigecycline resistance genes tet(X3) and tet(X4) have been reported, which pose a great challenge to human health and food security. The current study aimed to establish a TaqMan-based real-time PCR assay for the rapid detection of the tigecycline-resistant genes tet(X3) and tet(X4). RESULTS: No false-positive result was found, and the results of the TaqMan-based real-time PCR assay showed 100% concordance with the results of the sequencing analyses. This proposed method can detect the two genes at the level of 1 × 102 copies/µL, and the whole process is completed within an hour, allowing rapid screening of tet(X3) and tet(X4) genes in cultured bacteria, faeces, and soil samples. CONCLUSION: Taken together, the TaqMan-based real-time PCR method established in this study is rapid, sensitive, specific, and is capable of detecting the two genes not only in bacteria, but also in environmental samples.


Assuntos
Bactérias/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Fezes/microbiologia , Tigeciclina/farmacologia , Animais , Bactérias/efeitos dos fármacos , Primers do DNA/genética , Microbiologia Ambiental , Humanos , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase Multiplex , Reação em Cadeia da Polimerase em Tempo Real
14.
Artigo em Inglês | MEDLINE | ID: mdl-31085517

RESUMO

The rapid dissemination of the macrolide resistance gene erm(B) will likely compromise the efficacy of macrolides as the treatment of choice for campylobacteriosis. More importantly, erm(B) is always associated with several multidrug resistance genomic islands (MDRGIs), which confer resistance to multiple other antimicrobials. Continuous monitoring of the emergence of erm(B) and analysis of its associated genetic environments are crucial for our understanding of macrolide resistance in Campylobacter In this study, 290 Campylobacter isolates (216 Campylobacter coli isolates and 74 Campylobacter jejuni isolates) were obtained from 1,039 fecal samples collected in 2016 from pigs and chickens from three regions of China (344 samples from Guangdong, 335 samples from Shanghai, and 360 samples from Shandong). Overall, 74 isolates (72 C. coli isolates and 2 C. jejuni isolates) were PCR positive for erm(B). Combined with data from previous years, we observed a trend of increasing prevalence of erm(B) in C. coli Pulsed-field gel electrophoresis analyses suggested that both clonal expansion and horizontal transmission were involved in the dissemination of erm(B) in C. coli, and three novel types of erm(B)-associated MDRGIs were identified among the isolates. Furthermore, 2 erm(B)-harboring C. jejuni isolates also contained an aminoglycoside resistance genomic island and a multidrug-resistance-enhancing efflux pump, encoded by RE-cmeABC Antimicrobial susceptibility testing showed that most of the isolates were resistant to all clinically important antimicrobial agents used for the treatment of campylobacteriosis. These findings suggest that the increasing prevalence of erm(B)-associated MDRGIs might further limit treatment options for campylobacteriosis.


Assuntos
Antibacterianos/farmacologia , Campylobacter/genética , Ilhas Genômicas/genética , Macrolídeos/farmacologia , Campylobacter/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana Múltipla/genética , Eletroforese em Gel de Campo Pulsado , Genótipo , Testes de Sensibilidade Microbiana , Sequenciamento Completo do Genoma
15.
J Antimicrob Chemother ; 74(8): 2209-2213, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31102511

RESUMO

OBJECTIVES: Characterization of non-Escherichia coli NDM-carrying Enterobacteriaceae in the poultry production environment. METHODS: A total of 36 NDM-positive Enterobacteriaceae (22 Klebsiella pneumoniae, 13 Enterobacter cloacae and 1 Salmonella enterica) were isolated from a chicken farm and WGS was conducted using Illumina Hiseq2500. The genomic characterization of the isolates acquired through WGS analysis included the genomic context-flanking blaNDM genes, MLST, the antibiotic resistance genes (ARGs) and replicon types of plasmids. WGS information for another 73 K. pneumoniae isolates from different sources was retrieved from GenBank and then combined with isolates in this study for comparative genomic and phylogenetic analysis. RESULTS: Three types of genetic environment carrying blaNDM were identified in 36 non-E. coli Enterobacteriaceae isolates. Sequence comparison analysis indicated these genetic environments were completely identical to our previous findings. WGS further revealed three major types of plasmids (IncFIB, IncX3 and IncFII) from these isolates and the phylogenetic analysis suggested several K. pneumoniae isolates with ST11, ST37 and ST147 from the commercial chicken farm that were closely related to isolates of human origin. CONCLUSIONS: The blaNDM-harbouring genetic contexts were identified not only in E. coli, but also in K. pneumoniae, E. cloacae and S. enterica, which may indicate that blaNDM has been widely disseminated to non-E. coli Enterobacteriaceae species in animal farms. The close relationship of K. pneumoniae isolates from different origins suggests they could serve as a key vehicle for the transfer of ARGs between humans and food animal production environments.


Assuntos
Infecções por Enterobacteriaceae/veterinária , Enterobacteriaceae/genética , Filogenia , Aves Domésticas/microbiologia , Animais , Antibacterianos/farmacologia , Técnicas de Tipagem Bacteriana , China , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/enzimologia , Enterobacter cloacae/genética , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/enzimologia , Genes MDR/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/enzimologia , Salmonella enterica/genética , Sequenciamento Completo do Genoma
16.
J Antimicrob Chemother ; 74(8): 2166-2170, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31081013

RESUMO

OBJECTIVES: To investigate the occurrence, the genetic environment and the functionality of novel variants of the MDR gene cfr(C) in Campylobacter from China. METHODS: A total of 370 Campylobacter isolates of porcine and chicken origin collected from three regions of China in 2015 were screened for cfr(C) by PCR. The phenotypes and genotypes of cfr(C)-positive isolates were investigated by antimicrobial susceptibility testing, PFGE, MLST, S1-PFGE, Southern blotting and WGS. Quantitative RT-PCR was used to compare the expression levels of the cfr(C) variants in their original isolate and clone constructs in Campylobacter jejuni NCTC 11168. RESULTS: Four (1.1%) porcine Campylobacter coli isolates were positive for cfr(C). They failed to show elevated MICs of phenicols. The deduced Cfr(C) sequences identified exhibited 2-6 amino acid changes compared with the original Cfr(C) reported in the USA. Cloning of the cfr(C) variant genes into C. jejuni NCTC 11168 resulted in ≥32-fold increases in the MICs of phenicols, indicating that the cfr(C) variant genes are functional. The cfr(C)-carrying isolates belonged to three genotypes and WGS analysis revealed the cfr(C) genes were chromosomally located in MDR genomic islands, which contained multiple antibiotic resistance genes of Gram-positive origin. CONCLUSIONS: This study identified chromosomal cfr(C) genes in C. coli isolates from China. They appeared functionally dormant in the original isolates but were fully functional when cloned and expressed in C. jejuni. The cfr(C) genes were co-transferred with other antibiotic resistance genes, possibly from Gram-positive bacteria. These findings reveal new insights into the function and transmission of cfr(C) in Campylobacter.


Assuntos
Antibacterianos/farmacologia , Campylobacter/efeitos dos fármacos , Campylobacter/genética , Farmacorresistência Bacteriana Múltipla/genética , Genes MDR , Variação Genética , Animais , Técnicas de Tipagem Bacteriana , Campylobacter jejuni/genética , Galinhas/microbiologia , China , DNA Bacteriano/genética , Eletroforese em Gel de Campo Pulsado , Genótipo , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Suínos/microbiologia , Sequenciamento Completo do Genoma
17.
Proc Natl Acad Sci U S A ; 113(38): 10690-5, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27601641

RESUMO

Infections due to clonal expansion of highly virulent bacterial strains are clear and present threats to human and animal health. Association of genetic changes with disease is now a routine, but identification of causative mutations that enable disease remains difficult. Campylobacter jejuni is an important zoonotic pathogen transmitted to humans mainly via the foodborne route. C. jejuni typically colonizes the gut, but a hypervirulent and rapidly expanding clone of C. jejuni recently emerged, which is able to translocate across the intestinal tract, causing systemic infection and abortion in pregnant animals. The genetic basis responsible for this hypervirulence is unknown. Here, we developed a strategy, termed "directed genome evolution," by using hybridization between abortifacient and nonabortifacient strains followed by selection in an animal disease model and whole-genome sequence analysis. This strategy successfully identified SNPs in porA, encoding the major outer membrane protein, are responsible for the hypervirulence. Defined mutagenesis verified that these mutations were both necessary and sufficient for causing abortion. Furthermore, sequence analysis identified porA as the gene with the top genome-wide signal of adaptive evolution using Fu's Fs, a population genetic metric for recent population size changes, which is consistent with the recent expansion of clone "sheep abortion." These results identify a key virulence factor in Campylobacter and a potential target for the control of this zoonotic pathogen. Furthermore, this study provides general, unbiased experimental and computational approaches that are broadly applicable for efficient elucidation of disease-causing mutations in bacterial pathogens.


Assuntos
Proteínas de Bactérias/genética , Infecções por Campylobacter/genética , Campylobacter jejuni/genética , Porinas/genética , Doenças dos Ovinos/genética , Animais , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/transmissão , Campylobacter jejuni/patogenicidade , Humanos , Mutação Puntual , Ovinos , Doenças dos Ovinos/microbiologia , Doenças dos Ovinos/transmissão
18.
J Clin Microbiol ; 56(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29386265

RESUMO

The global spread of carbapenem-resistant Enterobacteriaceae (CRE) is one of the most severe threats to human health in a clinical setting. The recent emergence of plasmid-mediated colistin resistance gene mcr-1 among CRE strains greatly compromises the use of colistin as a last resort for the treatment of infections caused by CRE. This study aimed to understand the current epidemiological trends and characteristics of CRE from a large hospital in Henan, the most populous province in China. From 2014 to 2016, a total of 7,249 Enterobacteriaceae isolates were collected from clinical samples, among which 18.1% (1,311/7,249) were carbapenem resistant. Carbapenem-resistant Klebsiella pneumoniae and carbapenem-resistant Escherichia coli were the two most common CRE species, with Klebsiella pneumoniae carbapenemases (KPC) and New Delhi metallo-ß-lactamases (NDM), respectively, responsible for the carbapenem resistance of the two species. Notably, >57.0% (n = 589) of the K. pneumoniae isolates from the intensive care unit were carbapenem resistant. Furthermore, blaNDM-5 and mcr-1 were found to coexist in one E. coli isolate, which exhibited resistance to almost all tested antibiotics. Overall, we observed a significant increase in the prevalence of CRE isolates during the study period and suggest that carbapenems may no longer be considered to be an effective treatment for infections caused by K. pneumoniae in the studied hospital.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos/farmacologia , Colistina/farmacologia , Infecções por Enterobacteriaceae/epidemiologia , Proteínas de Escherichia coli/genética , Antibacterianos/farmacologia , China/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Hospitais , Humanos , Unidades de Terapia Intensiva , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Prevalência , beta-Lactamases/genética
19.
Infect Immun ; 85(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28373351

RESUMO

Campylobacter jejuni is a zoonotic pathogen, and a hypervirulent clone, named clone SA, has recently emerged as the predominant cause of ovine abortion in the United States. To induce abortion, orally ingested Campylobacter must translocate across the intestinal epithelium, spread systemically in the circulation, and reach the fetoplacental tissue. Bacterial factors involved in these steps are not well understood. C. jejuni is known to produce capsular polysaccharide (CPS), but the specific role that CPS plays in systemic infection and particularly abortion in animals remains to be determined. In this study, we evaluated the role of CPS in bacteremia using a mouse model and in abortion using a pregnant guinea pig model following oral challenge. Compared with C. jejuni NCTC 11168 and 81-176, a clone SA isolate (IA3902) resulted in significantly higher bacterial counts and a significantly longer duration of bacteremia in mice. The loss of capsule production via gene-specific mutagenesis in IA3902 led to the complete abolishment of bacteremia in mice and abortion in pregnant guinea pigs, while complementation of capsule expression almost fully restored these phenotypes. The capsule mutant strain was also impaired for survival in guinea pig sera and sheep blood. Sequence-based analyses revealed that clone SA possesses a unique CPS locus with a mosaic structure, which has been stably maintained in all clone SA isolates derived from various hosts and times. These findings establish CPS as a key virulence factor for the induction of systemic infection and abortion in pregnant animals and provide a viable candidate for the development of vaccines against hypervirulent C. jejuni.


Assuntos
Aborto Séptico/microbiologia , Cápsulas Bacterianas/metabolismo , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/patogenicidade , Polissacarídeos Bacterianos/metabolismo , Animais , Cápsulas Bacterianas/genética , Infecções por Campylobacter/metabolismo , Campylobacter jejuni/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Cobaias , Camundongos , Mutação , Polissacarídeos Bacterianos/genética , Gravidez , Ovinos , Virulência , Fatores de Virulência/genética
20.
Emerg Infect Dis ; 23(4): 710-711, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28322714

RESUMO

To investigate the prevalence of the recently emerging colistin resistance gene mcr-1 in Enterobacteriaceae among companion animals, we examined 566 isolates collected from cats and dogs in Beijing, China, during 2012-2016. Of these isolates, 49 (8.7%) were mcr-1-positive.


Assuntos
Gatos/microbiologia , Cães/microbiologia , Enterobacteriaceae/genética , Proteínas de Escherichia coli/genética , Animais de Estimação/microbiologia , Animais , Antibacterianos/farmacologia , Pequim , Colistina/farmacologia , Farmacorresistência Bacteriana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA