Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Exp Cell Res ; 406(2): 112727, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34370992

RESUMO

BACKGROUND: Epigenetic dysregulation participates in the initiation and progression of hepatocellular carcinoma (HCC). Bromodomain-containing protein 9 (BRD9) can identify acetylated lysine residues, contributing to several cancers. The function and molecular mechanism of BRD9 in HCC remain poorly understood. METHODS: BRD9 levels in tissues and cells of HCC and normal liver were evaluated using bioinformatic analysis, real-time PCR, and western blot. BRD9's association with clinical outcomes was investigated via survival analyses. Biological behaviors and pathways related to BRD9 were predicted using gene set enrichment analysis. BRD9's role in proliferation was verified via cell counting kit 8, colony formation, and 5-Ethynyl-2'-deoxyuridine assays. Its role in the cell cycle and apoptosis was assessed using flow cytometry. The role of BRD9 in vivo was investigated using xenograft tumor models. A rescue assay was performed to investigate the molecular mechanism of BRD9. RESULTS: BRD9 was markedly upregulated in HCC and higher BRD9 expression was associated with higher grade, advanced stage, greater tumor size, and poorer prognosis. BRD9 overexpression enhanced cell proliferation, cell cycle progress, but impeded cell apoptosis. BRD9 downregulation had the opposite effects. In vivo, BRD9 promoted xenograft tumor growth. Mechanistically, BRD9 activated Wnt/ß-catenin signaling, obstruction of which abrogated BRD9-mediated tumorigenesis. CONCLUSION: Increased BRD9 in HCC correlated with poor prognosis, which functioned via activating Wnt/ß-catenin signaling. Thus, BRD9 might be a promising biomarker and therapeutic target for patients with HCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Ciclo Celular , Movimento Celular , Proliferação de Células , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Fatores de Transcrição/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem , beta Catenina/genética
2.
J Cell Physiol ; 235(6): 5084-5095, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31691973

RESUMO

Astrocyte elevated gene 1 (AEG-1) is overexpressed in hepatocellular carcinoma (HCC) and is strongly associated with tumor metastasis. Anoikis resistance and autophagy may play an important role in the survival of circulating tumor cells. However, the relationship among AEG-1, anoikis resistance, autophagy, and metastasis in HCC is still not clear. The results of this study indicate that AEG-1 expression is increased in HCC cell lines grown in suspension culture. AEG-1 could enhance anoikis resistance to promote the survival of detached HCC cells. Moreover, the anoikis resistance appears to be partly dependent on autophagy. Regulating AEG-1 expression changed the autophagy levels to modulate anoikis resistance, likely acting via the protein kinase RNA-like ER kinase (PERK)-eIF2α-ATF4-CHOP signaling axis. Finally, inhibiting autophagy by RNA interference prevented the AEG-1-promoted metastasis of HCC xenografts to the liver and lungs of nude mice. Taken together, AEG-1 is a key contributor to anoikis resistance and metastasis by inducing autophagy in vitro and in vivo, and it may be a potential target for therapeutic intervention in HCC.


Assuntos
Fator 4 Ativador da Transcrição/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteínas de Membrana/genética , Proteínas de Ligação a RNA/genética , eIF-2 Quinase/genética , Animais , Anoikis/genética , Autofagia/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Metástase Neoplásica , Transdução de Sinais/genética
3.
Int J Med Sci ; 17(9): 1224-1234, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547318

RESUMO

Background: Increasing evidence has implicated that lncRNAs (long non-coding RNAs) play significant roles in carcinogenesis and progression of HCC (hepatocellular carcinoma). LINC01503 is a new lncRNA related to several tumors. Nonetheless, its role in HCC still remains unclear. Methods: The expression levels of LINC01503 in HCC, normal liver tissues as well as HCC cell lines were evaluated by TCGA (The Cancer Genome Atlas) and real-time PCR assay, respectively. The relationship between LINC01503 levels and the prognosis of patients with HCC was evaluated using Kaplan-Meier survival analysis. Then the potential biological functions and pathways related to LINC01503 were investigated by GO (Gene Ontology) analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, and GSEA v4.0.1 software was employed. Furthermore, the influence of LINC01503 on the proliferation and apoptosis of HCC cells was confirmed using CCK8 assay, flow cytometry, and clone formation assay in cell experiments. Also the pro-tumor effect of LINC01503 was verified by mice xenograft experiment in vivo. In addition, the functional pathway of LINC01503 was proved by western blot and rescue experiments. Results: LINC01503 was highly expressed in HCC and positively correlated with large tumor size, high tumor grade, advanced tumor stage, and poor prognosis of HCC patients. Silencing LINC01503 with shRNA significantly restrained the proliferation of MHCC-97H HCC cells and strengthened the apoptosis, while up-regulation of LINC01503 in Huh7 HCC cells contributed to the contrary effects. Besides, LINC01503 promoted tumor growth of nude mice transplanted with liver cancer cells. Mechanistically, MAPK/ERK signaling pathway was activated by LINC01503, inhibition of which could alleviate the pro-tumor effect of LINC01503, consistent with the forecast of GSEA (Gene Set Enrichment Analysis). Conclusion: LINC01503 is highly expressed in HCC and promotes the progression of HCC via MAPK/ERK pathway, which maybe a new potential biomarker and therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose/genética , Apoptose/fisiologia , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Neoplasias Hepáticas/genética , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , RNA Longo não Codificante/genética , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
5.
Biomed Pharmacother ; 133: 111023, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33378941

RESUMO

Long noncoding RNAs (lncRNAs) have been identified to play increasingly important roles in tumorigenesis, and they may serve as novel biomarkers for cancer therapy. LncRNA NBR2 (neighbor of BRCA1 gene 2), a novel identified lncRNA, is demonstrated to decrease in several cancers. However, it is still unknown whether lncRNA NBR2 is involved in hepatocellular carcinoma and autophagy. We found that HCC cases with lower NBR2 expression had significantly worse overall survival than those with higher NBR2 expression in advanced patients. And the expression of NBR2 was negatively correlated with the degree of malignancy of HCC cell lines and differentiation of hepatocellular carcinoma. Besides, NBR2 inhibited the proliferation, invasion, and migration of liver cancer cells. We further found that NBR2 repressed cytoprotective autophagy to restrain HCC cell proliferation. Moreover, NBR2 inhibited Beclin 1-dependent autophagy through ERK and JNK pathways. Taken together, NBR2 suppressed autophagy-induced cell proliferation at least partly through ERK and JNK pathways. These data indicated that NBR2 served as a tumor suppressor gene in hepatocellular carcinoma. The current study provides a novel insight and treatment strategy for hepatocellular carcinoma.


Assuntos
Autofagia , Carcinogênese/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Movimento Celular , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , RNA Longo não Codificante/genética , Transdução de Sinais , Fatores de Transcrição
6.
Biomed Res Int ; 2019: 5202750, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31662980

RESUMO

Primary cilia are organelles protruding from cell surface into environment that function in regulating cell cycle and modulating cilia-related signal. Primary ciliogenesis and autophagy play important roles in tumorigenesis. However, the functions and interactions between primary cilia and autophagy in hepatocellular carcinoma (HCC) have not been reported yet. Here, we aimed to investigate the relationship and function of primary cilia and autophagy in HCC. In vitro, we showed that serum starvation stimuli could trigger primary ciliogenesis in HCC cells. Blockage of primary ciliogenesis by IFT88 silencing enhanced the proliferation, migration, and invasion ability of HCC cells. In addition, inhibition of primary cilia could positively regulate autophagy. However, the proliferation, migration, and invasion ability which were promoted by IFT88 silencing could be partly reversed by inhibition of autophagy. In vivo, interference of primary cilia led to acceleration of tumor growth and increase of autophagic flux in xenograft HCC mouse models. Moreover, IFT88 high expression or ATG7 low expression in HCC tissues was correlated with longer survival time indicated by the Cancer Genome Atlas (TCGA) analysis. In conclusion, our study demonstrated that blockage of primary ciliogenesis by IFT88 silencing had protumor effects through induction of autophagy in HCC. These findings define a newly recognized role of primary cilia and autophagy in HCC.


Assuntos
Autofagia/fisiologia , Carcinoma Hepatocelular/patologia , Cílios/patologia , Neoplasias Hepáticas/patologia , Invasividade Neoplásica/patologia , Animais , Autofagia/genética , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Cílios/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/genética
7.
Am J Cancer Res ; 8(7): 1142-1156, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30094090

RESUMO

Circular RNAs (circRNAs) are a series of special closed circular RNA molecules with stability and conservatism. In recent years, advances in high-throughput RNA sequencing technology have led to explosive discovery of circRNAs in different types of species and cells. Moreover, circRNAs can accomplish a remarkable multitude of biological functions, such as regulating transcription or splicing, serving as miRNA sponges, interacting with RNA-binding proteins, and translating proteins. Meanwhile, circRNAs involve in the biogenesis and development of many diseases, including cardiovascular disorders, nervous system disorders, cancers, etc. Herein, we discuss the latest research progress of circRNA, as well as their diagnostic and prognostic significance in digestive system cancers. In addition, this paper highlights that circRNAs might serve as potential therapeutic targets for novel drugs by taking digestive system cancer as an illustrative example.

8.
Sci Rep ; 8(1): 4108, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29515134

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a kind of liver lipid synthesis and degradation imbalance related with metabolic syndrome. Celecoxib shows the function of ameliorating NAFLD, but the underlying mechanisms remain unknown. Here, we discuss the possible mechanisms of celecoxib alleviating NAFLD by restoring autophagic flux. Lipids were accumulated in L02 cells treated with palmitate as well as SD rats fed with high-fat diet. Western blot showed that LC3 II/I was higher and p62 was lower on the early stage of steatosis while on the late stage both of them were higher, indicating that autophagic flux was activated on the early stage of steatosis, but blocked on the late stage. Rapamycin alleviated steatosis with activating autophagic flux while chloroquine aggravated steatosis with inhibiting autophagic flux. COX-2 siRNA and celecoxib were used to inhibit COX-2. Western blot and RFP-GFP-LC3 double fluorescence system indicated that celecoxib could ameliorate steatosis and restore autophagic flux in L02 cells treated with palmitate as well as SD rats fed with high-fat diet. In conclusion, celecoxib partially restores autophagic flux via downregulation of COX-2 and alleviates steatosis in vitro and in vivo.


Assuntos
Autofagia/efeitos dos fármacos , Celecoxib/farmacologia , Dieta Hiperlipídica/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Linhagem Celular , Cloroquina/efeitos adversos , Cloroquina/farmacologia , Humanos , Masculino , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos , Ratos Sprague-Dawley , Sirolimo/efeitos adversos , Sirolimo/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA