Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Chem ; 153: 107885, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39442459

RESUMO

Ginsenosides are natural products with hydrophobic rings adorned with sugar molecules. The elucidation of the impact of ginsenosides structure on their activity is crucial for facilitating precision-oriented modifications, thereby enhancing their suitability for drug development. Here, utilizing an ob/ob mouse model, we demonstrated that as the number of sugar moiety on the protopanaxadiol-type ginsenosides decreased, the hypolipidemic potency increased, while the aglycon exhibited negligible activity. Mechanistically, we demonstrated the dependency of ginsenosides on the glucocorticoid receptor (GR) for the regulation of lipid metabolism. Interestingly, ginsenoside CK was found to promote the transcription of lipid metabolism-related genes via GR contrast to the effects of glucocorticoids, suggesting a unique mode of action. Furthermore, we observed that a reduction in the number of sugar molecules strengthened the binding affinity of ginsenosides to GR, as determined by microscale thermophoresis. These findings highlight the critical role of the sugar moiety in modulating the lipid-regulating capacity of ginsenosides, providing valuable insights for the development of these compounds as potential therapeutic agents.

2.
Eur J Pharmacol ; 971: 176530, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38527700

RESUMO

After myocardial infarction (MI), there is a notable disruption in cellular calcium ion homeostasis and mitochondrial function, which is believed to be intricately linked to endoplasmic reticulum (ER) stress. This research endeavors to elucidate the involvement of glucose regulated protein 75 (GRP75) in post-MI calcium ion homeostasis and mitochondrial function. In MI rats, symptoms of myocardial injury were accompanied by an increase in the activation of ER stress. Moreover, in oxygen-glucose deprivation (OGD)-induced cardiomyocytes, it was confirmed that inhibiting ER stress exacerbated intracellular Ca2+ disruption and cell apoptosis. Concurrently, the co-localization of GRP75 with IP3R and VDAC1 increased under ER stress in cardiomyocytes. In OGD-induced cardiomyocytes, knockdown of GRP75 not only reduced the Ca2+ levels in both the ER and mitochondria and improved the ultrastructure of cardiomyocytes, but it also increased the number of contact points between the ER and mitochondria, reducing mitochondria associated endoplasmic reticulum membrane (MAM) formation, and decreased cell apoptosis. Significantly, knockdown of GRP75 did not affect the protein expression of PERK and hypoxia-inducible factor 1α (HIF-1α). Transcriptome analysis of cardiomyocytes revealed that knockdown of GRP75 mainly influenced the molecular functions of sialyltransferase and IP3R, as well as the biosynthesis of glycosphingolipids and lactate metabolism. The complex interaction between the ER and mitochondria, driven by the GRP75 and its associated IP3R1-GRP75-VDAC1 complex, is crucial for calcium homeostasis and cardiomyocyte's adaptive response to ER stress. Modulating GRP75 could offer a strategy to regulate calcium dynamics, diminish glycolysis, and thereby mitigate cardiomyocyte apoptosis.


Assuntos
Cálcio , Proteínas de Choque Térmico HSP70 , Proteínas de Membrana , Infarto do Miocárdio , Animais , Ratos , Cálcio/metabolismo , Estresse do Retículo Endoplasmático , Glucose/metabolismo , Mitocôndrias/metabolismo , Infarto do Miocárdio/metabolismo , Oxigênio/metabolismo
3.
Chin Med ; 19(1): 85, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877519

RESUMO

BACKGROUND: Liguzinediol (Lig) has emerged as a promising candidate for mitigating Doxorubicin (DOX)-induced cardiotoxicity, a significant limitation in the clinical application of this widely used antineoplastic drug known for its efficacy. This study aimed to explore the effects and potential mechanisms underlying Lig's protective role against DOX-induced cardiotoxicity. METHODS: C57BL/6 mice were treated with DOX. Cardiac function changes were observed by echocardiography. Cardiac structure changes were observed by HE and Masson staining. Immunofluorescence was applied to visualize the cardiomyocyte apoptosis. Western blotting was used to detect the expression levels of AMP-activated protein kinase (AMPK), sirtuin 3 (SIRT3), Caspase-3 and gasdermin E N-terminal fragment (GSDME-N). These experiments confirmed that Lig had an ameliorative effect on DOX-induced cardiotoxicity in mice. RESULTS: The results demonstrated that Lig effectively countered myocardial oxidative stress by modulating intracellular levels of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD). Lig reduced levels of creatine kinase (CK) and lactate dehydrogenase (LDH), while ameliorating histopathological changes and improving electrocardiogram profiles in vivo. Furthermore, the study revealed that Lig activated the AMPK/SIRT3 pathway, thereby enhancing mitochondrial function and attenuating myocardial cell apoptosis. In experiments with H9C2 cells treated with DOX, co-administration of the AMPK inhibitor compound C (CC) led to a significant increase in intracellular ROS levels. Lig intervention reversed these effects, along with the downregulation of GSDME-N, interleukin-1ß (IL-1ß), and interleukin-6 (IL-6), suggesting a potential role of Lig in mitigating Caspase-3/GSDME-mediated pyroptosis. CONCLUSION: The findings of this study suggest that Lig effectively alleviates DOX-induced cardiotoxicity through the activation of the AMPK/SIRT3 pathway, thereby presenting itself as a natural product with therapeutic potential for preventing DOX-associated cardiotoxicity. This novel approach may pave the way for the development of alternative strategies in the clinical management of DOX-induced cardiac complications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA