Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 21(9): 1070-1081, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661361

RESUMO

Tissue-resident memory CD8+ T cells (TRM cells) are crucial in protecting against reinvading pathogens, but the impact of reinfection on their tissue confinement and contribution to recall responses is unclear. We developed a unique lineage tracer mouse model exploiting the TRM-defining transcription factor homolog of Blimp-1 in T cells (Hobit) to fate map the TRM progeny in secondary responses. After reinfection, a sizeable fraction of secondary memory T cells in the circulation developed downstream of TRM cells. These tissue-experienced ex-TRM cells shared phenotypic properties with the effector memory T cell population but were transcriptionally and functionally distinct from other secondary effector memory T cell cells. Adoptive transfer experiments of TRM cells corroborated their potential to form circulating effector and memory cells during recall responses. Moreover, specific ablation of primary TRM cell populations substantially impaired the secondary T cell response, both locally and systemically. Thus, TRM cells retain developmental plasticity and shape both local and systemic T cell responses on reinfection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Transferência Adotiva , Animais , Diferenciação Celular , Linhagem da Célula , Plasticidade Celular , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética
3.
PLoS Pathog ; 17(12): e1010103, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34871329

RESUMO

Yersinia pseudotuberculosis is a foodborne pathogen that subverts immune function by translocation of Yersinia outer protein (Yop) effectors into host cells. As adaptive γδ T cells protect the intestinal mucosa from pathogen invasion, we assessed whether Y. pseudotuberculosis subverts these cells in mice and humans. Tracking Yop translocation revealed that the preferential delivery of Yop effectors directly into murine Vγ4 and human Vδ2+ T cells inhibited anti-microbial IFNγ production. Subversion was mediated by the adhesin YadA, injectisome component YopB, and translocated YopJ effector. A broad anti-pathogen gene signature and STAT4 phosphorylation levels were inhibited by translocated YopJ. Thus, Y. pseudotuberculosis attachment and translocation of YopJ directly into adaptive γδ T cells is a major mechanism of immune subversion in mice and humans. This study uncovered a conserved Y. pseudotuberculosis pathway that subverts adaptive γδ T cell function to promote pathogenicity.


Assuntos
Proteínas de Bactérias/imunologia , Evasão da Resposta Imune/imunologia , Interferon gama/biossíntese , Linfócitos Intraepiteliais/imunologia , Infecções por Yersinia pseudotuberculosis/imunologia , Animais , Humanos , Camundongos , Yersinia pseudotuberculosis/imunologia
4.
Nat Immunol ; 12(6): 485-91, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21739671

RESUMO

After infection, most antigen-specific memory T cells reside in nonlymphoid tissues. Tissue-specific programming during priming leads to directed migration of T cells to the appropriate tissue, which promotes the development of tissue-resident memory in organs such as intestinal mucosa and skin. Mechanisms that regulate the retention of tissue-resident memory T cells include transforming growth factor-ß (TGF-ß)-mediated induction of the E-cadherin receptor CD103 and downregulation of the chemokine receptor CCR7. These pathways enhance protection in internal organs, such as the nervous system, and in the barrier tissues--the mucosa and skin. Memory T cells that reside at these surfaces provide a first line of defense against subsequent infection, and defining the factors that regulate their development is critical to understanding organ-based immunity.


Assuntos
Antígenos/imunologia , Memória Imunológica/imunologia , Mucosa/imunologia , Linfócitos T/imunologia , Animais , Antígenos CD/imunologia , Antígenos CD/metabolismo , Humanos , Cadeias alfa de Integrinas/imunologia , Cadeias alfa de Integrinas/metabolismo , Modelos Imunológicos , Receptores CCR7/imunologia , Receptores CCR7/metabolismo , Linfócitos T/metabolismo , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo
5.
Immunity ; 40(5): 747-57, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24792910

RESUMO

The intestinal mucosa promotes T cell responses that might be beneficial for effective mucosal vaccines. However, intestinal resident memory T (Trm) cell formation and function are poorly understood. We found that oral infection with Listeria monocytogenes induced a robust intestinal CD8 T cell response and blocking effector T cell migration showed that intestinal Trm cells were critical for secondary protection. Intestinal effector CD8 T cells were predominately composed of memory precursor effector cells (MPECs) that rapidly upregulated CD103, which was needed for T cell accumulation in the intestinal epithelium. CD103 expression, rapid MPEC formation, and maintenance in intestinal tissues were dependent on T cell intrinsic transforming growth factor ß signals. Moreover, intestinal Trm cells generated after intranasal or intravenous infection were less robust and phenotypically distinct from Trm cells generated after oral infection, demonstrating the critical contribution of infection route for directing the generation of protective intestinal Trm cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Mucosa Intestinal/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Listeriose/transmissão , Doenças da Boca/microbiologia , Administração Oral , Transferência Adotiva , Animais , Antígenos CD/biossíntese , Movimento Celular/imunologia , Memória Imunológica/imunologia , Cadeias alfa de Integrinas/biossíntese , Mucosa Intestinal/citologia , Listeria monocytogenes/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Crescimento Transformador beta/imunologia
6.
Immunity ; 39(2): 347-56, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23932571

RESUMO

Many studies have examined pathways controlling effector T cell differentiation, but less is known about the fate of individual CD8+ T cells during infection. Here, we examine the antiviral and antibacterial responses of single CD8+ T cells from the polyclonal repertoire. The progeny of naive clonal CD8+ T cells displayed unique profiles of differentiation based on extrinsic pathogen-induced environmental cues, with some clones demonstrating extreme bias toward a single developmental pathway. Moreover, even within the same animal, a single naive CD8+ T cell exhibited distinct fates that were controlled by tissue-specific events. However, memory CD8+ T cells relied on intrinsic factors to control differentiation upon challenge. Our results demonstrate that stochastic and instructive events differentially contribute to shaping the primary and secondary CD8+ T cell response and provide insight into the underlying forces that drive effector differentiation and protective memory formation.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Listeriose/imunologia , Estomatite Vesicular/imunologia , Animais , Diferenciação Celular , Feminino , Memória Imunológica , Listeria monocytogenes/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vírus da Estomatite Vesicular Indiana/imunologia
7.
Immunity ; 39(1): 184-95, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23890071

RESUMO

The study of T cell memory and the target of vaccine design have focused on memory subsumed by T cells bearing the αß T cell receptor. Alternatively, γδ T cells are thought to provide rapid immunity, particularly at mucosal borders. Here, we have shown that a distinct subset of mucosal γδ T cells mounts an immune response to oral Listeria monocytogenes (Lm) infection and leads to the development of multifunctional memory T cells capable of simultaneously producing interferon-γ and interleukin-17A in the murine intestinal mucosa. Challenge infection with oral Lm, but not oral Salmonella or intravenous Lm, induced rapid expansion of memory γδ T cells, suggesting contextual specificity to the priming pathogen. Importantly, memory γδ T cells were able to provide enhanced protection against infection. These findings illustrate that γδ T cells play a role with hallmarks of adaptive immunity in the intestinal mucosa.


Assuntos
Memória Imunológica/imunologia , Intestinos/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/imunologia , Imunidade Adaptativa/imunologia , Sequência de Aminoácidos , Animais , Células Cultivadas , Feminino , Citometria de Fluxo , Interações Hospedeiro-Patógeno/imunologia , Receptores de Hialuronatos/imunologia , Receptores de Hialuronatos/metabolismo , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-17/imunologia , Interleucina-17/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Listeria monocytogenes/imunologia , Listeria monocytogenes/fisiologia , Listeriose/imunologia , Listeriose/metabolismo , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos BALB C , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
8.
J Immunol ; 205(4): 901-906, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669309

RESUMO

The basic leucine zipper transcription factor ATF-like 3 (BATF3) is required for the development of conventional type 1 dendritic cells that are essential for cross-presentation and CD8 T cell-mediated immunity against intracellular pathogens and tumors. However, whether BATF3 intrinsically regulates CD8 T cell responses is not well studied. In this article, we report a role for cell-intrinsic Batf3 expression in regulating the establishment of circulating and resident memory T cells after foodborne Listeria monocytogenes infection of mice. Consistent with other studies, Batf3 expression by CD8 T cells was dispensable for the primary response. However, Batf3 -/- T cells underwent increased apoptosis during contraction to contribute to a substantially reduced memory population. Batf3 -/- memory cells had an impaired ability to mount a robust recall response but remained functional. These findings reveal a cell-intrinsic role of Batf3 in regulating CD8 T cell memory development.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Memória Imunológica/imunologia , Proteínas Repressoras/imunologia , Proteínas Repressoras/metabolismo , Animais , Apoptose/imunologia , Células Cultivadas , Apresentação Cruzada/imunologia , Feminino , Imunidade Celular/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Listeriose/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Immun Ageing ; 19(1): 19, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35501808

RESUMO

BACKGROUND: It is generally accepted that aging has detrimental effects on conventional T cell responses to systemic infections. However, most pathogens naturally invade the body through mucosal barriers. Although mucosal sites are highly enriched in unconventional immune sentinels like γδ T cells, little is currently known about the impact of aging on unconventional mucosal T cell responses. We previously established that foodborne infection with a mouse-adapted internalin A mutant Listeria monocytogenes (Lm) generates an adaptive intestinal memory CD44hi CD27neg Vγ4 T cells capable of co-producing IL-17A and IFNγ. Therefore, we used this model to evaluate the impact of aging on adaptive Vγ4 T cell responses elicited by foodborne infection. RESULTS: Foodborne Lm infection of female Balb/c and C57BL/6 mice led to an increased adaptive CD44hi CD27neg Vγ4 T cell response associated with aging. Moreover, Lm-elicited CD44hi CD27neg Vγ4 T cells maintained diverse functional subsets despite some alterations favoring IL-17A production as mice aged. In contrast to the documented susceptibility of aged mice to intravenous Lm infection, mice contained bacteria after foodborne Lm infection suggesting that elevated bacterial burden was not a major factor driving the increased adaptive CD44hi CD27neg Vγ4 T cell response associated with mouse age. However, CD44hi CD27neg Vγ4 T cells accumulated in naïve mice as they aged suggesting that an increased precursor frequency contributes to the robust Lm-elicited mucosal response observed. Body mass did not appear to have a strong positive association with CD44hi CD27neg Vγ4 T cells within age groups. Although an increased adaptive CD44hi CD27neg Vγ4 T cell response may contribute to foodborne Lm resistance of C57BL/6 mice aged 19 or more months, neither anti-TCRδ or anti-IL-17A treatment impacted Lm colonization after primary infection. These results suggest that γδTCR signaling and IL-17A are dispensable for protection after primary foodborne Lm infection consistent with the role of conventional T cells during the early innate immune response to Lm. CONCLUSIONS: Lm-elicited adaptive Vγ4 T cells appear resistant to immunosenescence and memory Vγ4 T cells could be utilized to provide protective immune functions during enteric infection of aged hosts. As such, oral immunization might offer an efficient therapeutic approach to generate unconventional memory T cells in the elderly.

10.
Infect Immun ; 89(8): e0026521, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34031132

RESUMO

Primary infection of C57BL/6 mice with the bacterial pathogen Yersinia pseudotuberculosis elicits an unusually large H-2Kb-restricted CD8+ T cell response to the endogenous and protective bacterial epitope YopE69-77. To better understand the basis for this large response, the model OVA257-264 epitope was inserted into YopE in Y. pseudotuberculosis and antigen-specific CD8+ T cells in mice were characterized after foodborne infection with the resulting strain. The epitope YopE69-77 elicited significantly larger CD8+ T cell populations in the small intestine, mesenteric lymph nodes (MLNs), spleen, and liver between 7 and 30 days postinfection, despite residing in the same protein and having an affinity for H-2Kb similar to that of OVA257-264. YopE-specific CD8+ T cell precursors were ∼4.6 times as abundant as OVA-specific precursors in the MLNs, spleens, and other lymph nodes of naive mice, explaining the dominance of YopE69-77 over OVA257-264 at early infection times. However, other factors contributed to this dominance, as the ratio of YopE-specific to OVA-specific CD8+ T cells increased between 7 and 30 days postinfection. We also compared the YopE-specific and OVA-specific CD8+ T cells generated during infection for effector and memory phenotypes. Significantly higher percentages of YopE-specific cells were characterized as short-lived effectors, while higher percentages of OVA-specific cells were memory precursor effectors at day 30 postinfection in spleen and liver. Our results suggest that a large precursor number contributes to the dominance and effector and memory functions of CD8+ T cells generated in response to the protective YopE69-77 epitope during Y. pseudotuberculosis infection of C57BL/6 mice.


Assuntos
Antígenos de Bactérias/imunologia , Linfócitos T CD8-Positivos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T , Infecções por Yersinia pseudotuberculosis/imunologia , Infecções por Yersinia pseudotuberculosis/microbiologia , Yersinia pseudotuberculosis/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Modelos Animais de Doenças , Epitopos de Linfócito T/imunologia , Memória Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Yersinia pseudotuberculosis/transmissão
11.
FASEB J ; 32(5): 2339-2353, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29259036

RESUMO

Bioactive sphingolipids are modulators of immune processes and their metabolism is often dysregulated in ulcerative colitis, a major category of inflammatory bowel disease (IBD). While multiple axes of sphingolipid metabolism have been investigated to delineate mechanisms regulating ulcerative colitis, the role of acid ceramidase (AC) in intestinal inflammation is yet to be characterized. Here we demonstrate that AC expression is elevated selectively in the inflammatory infiltrate in human and murine colitis. To probe for mechanistic insight into how AC up-regulation can impact intestinal inflammation, we investigated the selective loss of AC expression in the myeloid population. Using a model of intestinal epithelial injury, we demonstrate that myeloid AC conditional knockout mice exhibit impairment of neutrophil recruitment to the colon mucosa as a result of defective cytokine and chemokine production. Furthermore, the loss of myeloid AC protects from tumor incidence in colitis-associated cancer (CAC) and inhibits the expansion of neutrophils and granulocytic myeloid-derived suppressor cells in the tumor microenvironment. Collectively, our results demonstrate a tissue-specific role for AC in regulating neutrophilic inflammation and cytokine production. We demonstrate novel mechanisms of how granulocytes are recruited to the colon that may have therapeutic potential in intestinal inflammation, IBD, and CAC.-Espaillat, M. P., Snider, A. J., Qiu, Z., Channer, B., Coant, N., Schuchman, E. H., Kew, R. R., Sheridan, B. S., Hannun, Y. A., Obeid, L. M. Loss of acid ceramidase in myeloid cells suppresses intestinal neutrophil recruitment.


Assuntos
Ceramidase Ácida/biossíntese , Colite Ulcerativa/enzimologia , Colo/enzimologia , Regulação Enzimológica da Expressão Gênica , Mucosa Intestinal/enzimologia , Neutrófilos/enzimologia , Regulação para Cima , Ceramidase Ácida/genética , Animais , Quimiocinas/biossíntese , Quimiocinas/genética , Colite Ulcerativa/genética , Colite Ulcerativa/patologia , Colo/patologia , Neoplasias do Colo/enzimologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Feminino , Humanos , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Knockout , Células Supressoras Mieloides/enzimologia , Células Supressoras Mieloides/patologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neutrófilos/patologia , Microambiente Tumoral/genética
12.
J Immunol ; 199(4): 1353-1361, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28710253

RESUMO

The development of a subunit Salmonella vaccine has been hindered by the absence of detailed information about antigenic targets of protective Salmonella-specific T and B cells. Recent studies have identified SseB as a modestly protective Ag in susceptible C57BL/6 mice, but the mechanism of protective immunity remains undefined. In this article, we report that simply combining Salmonella SseB with flagellin substantially enhances protective immunity, allowing immunized C57BL/6 mice to survive for up to 30 d following challenge with virulent bacteria. Surprisingly, the enhancing effect of flagellin did not require flagellin Ag targeting during secondary responses or recognition of flagellin by TLR5. Although coimmunization with flagellin did not affect SseB-specific Ab responses, it modestly boosted CD4 responses. In addition, protective immunity was effectively transferred in circulation to parabionts of immunized mice, demonstrating that tissue-resident memory is not required for vaccine-induced protection. Finally, protective immunity required host expression of IFN-γR but was independent of induced NO synthase expression. Taken together, these data indicate that Salmonella flagellin has unique adjuvant properties that improve SseB-mediated protective immunity provided by circulating memory.


Assuntos
Proteínas de Bactérias/imunologia , Flagelina/imunologia , Memória Imunológica , Chaperonas Moleculares/imunologia , Salmonelose Animal/prevenção & controle , Vacinas contra Salmonella/imunologia , Adjuvantes Imunológicos , Animais , Anticorpos Antibacterianos/sangue , Linfócitos T CD4-Positivos/imunologia , Feminino , Imunização , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Vacinas contra Salmonella/administração & dosagem , Salmonella typhimurium/imunologia , Receptor 5 Toll-Like/imunologia , Receptor de Interferon gama
13.
Proc Natl Acad Sci U S A ; 113(30): 8502-7, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27402748

RESUMO

Memory γδ T cells are important for the clearance of Listeria monocytogenes infection in the intestinal mucosa. However, the mechanisms by which memory γδ T cells provide protection against secondary oral infection are poorly understood. Here we used a recombinant strain of L. monocytogenes that efficiently invades the intestinal epithelium to show that Vγ4(+) memory γδ T cells represent a resident memory (Trm) population in the mesenteric lymph nodes (MLNs). The γδ Trm exhibited a remarkably static pattern of migration that radically changed following secondary oral L. monocytogenes infection. The γδ Trms produced IL-17A early after rechallenge and formed organized clusters with myeloid cells surrounding L. monocytogenes replication foci only after a secondary oral infection. Antibody blocking studies showed that in addition to IL-17A, the chemokine receptor C-X-C chemokine receptor 3 (CXCR3) is also important to enable the local redistribution of γδ Trm cells and myeloid cells specifically near the sites of L. monocytogenes replication within the MLN to restrict bacterial growth and spread. Our findings support a role for γδ Trms in orchestrating protective immune responses against intestinal pathogens.


Assuntos
Imunidade Inata/imunologia , Interleucina-17/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Movimento Celular/imunologia , Feminino , Memória Imunológica/imunologia , Interleucina-17/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Listeria monocytogenes/fisiologia , Listeriose/metabolismo , Listeriose/microbiologia , Linfonodos/imunologia , Mesentério/imunologia , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Células Mieloides/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores CXCR3/imunologia , Receptores CXCR3/metabolismo , Subpopulações de Linfócitos T/metabolismo
14.
Proc Natl Acad Sci U S A ; 113(8): 2182-7, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26862175

RESUMO

Viral clearance requires effector T-cell egress from the draining lymph node (dLN). The mechanisms that regulate the complex process of effector T-cell egress from the dLN after infection are poorly understood. Here, we visualized endogenous pathogen-specific effector T-cell migration within, and from, the dLN. We used an inducible mouse model with a temporally disrupted sphingosine-1-phosphate receptor-1 (S1PR1) gene specifically in endogenous effector T cells. Early after infection, WT and S1PR1(-/-) effector T cells localized exclusively within the paracortex. This localization in the paracortex by CD8 T cells was followed by intranodal migration by both WT and S1PR1(-/-) T cells to positions adjacent to both cortical and medullary lymphatic sinuses where the T cells exhibited intense probing behavior. However, in contrast to WT, S1PR1(-/-) effector T cells failed to enter the sinuses. We demonstrate that, even when LN retention signals such as CC chemokine receptor 7 (CCR7) are down-regulated, T cell intrinsic S1PR1 is the master regulator of effector T-cell emigration from the dLN.


Assuntos
Infecções/imunologia , Infecções/patologia , Linfonodos/imunologia , Linfonodos/patologia , Receptores de Lisoesfingolipídeo/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia , Animais , Movimento Celular/imunologia , Células Endoteliais/imunologia , Células Endoteliais/patologia , Ativação Linfocitária , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores de Lisoesfingolipídeo/deficiência , Receptores de Lisoesfingolipídeo/genética , Receptores de Esfingosina-1-Fosfato , Estomatite Vesicular/imunologia , Estomatite Vesicular/patologia , Vírus da Estomatite Vesicular Indiana
15.
J Surg Orthop Adv ; 28(3): 201-208, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31675297

RESUMO

The objective of this study was to determine which plane of hip motion (rotational or sagittal) is more predictive of lower extremity (LE) injury in elite soccer players. A total of 69 athletes (43 professional and 26 collegiate) were examined (mean age, 22.6 years). Bilateral hip internal rotation (IR), external rotation, extension, and flexion measurements were taken along with the modified Thomas test during preseason physicals. There were 42 LE injuries (injury rate 3.74/1000 athlete exposures). Mean IR was 25.2. and 29.9° for injured versus noninjured extremities, respectively (p = .009). There was a significant association between decreased IR (categorized as IR < 28°) and incidence of ipsilateral LE injury (p = .042). Extremities with IR < 28° were 2.81 times more likely to sustain a LE injury (95% CI, 1.15.6.84; p = .023). With a utilitarian focus, the current study has identified a measurement of decreased hip IR with potential for substantial clinical value in collegiate and professional soccer players. (Journal of Surgical Orthopaedic Advances 28(3):201-208, 2019).


Assuntos
Extremidade Inferior , Futebol , Humanos , Extremidade Inferior/lesões , Estudos Prospectivos , Amplitude de Movimento Articular , Rotação , Futebol/lesões , Adulto Jovem
16.
Infect Immun ; 86(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29263104

RESUMO

Murine Ly6Chi inflammatory monocytes (IMs) require CCR2 to leave the bone marrow and enter mesenteric lymph nodes (MLNs) and other organs in response to Yersinia pseudotuberculosis infection. We are investigating how IMs, which can differentiate into CD11c+ dendritic cells (DCs), contribute to innate and adaptive immunity to Y. pseudotuberculosis Previously, we obtained evidence that IMs are important for a dominant CD8+ T cell response to the epitope YopE69-77 and host survival using intravenous infections with attenuated Y. pseudotuberculosis Here we challenged CCR2+/+ or CCR2-/- mice orally with wild-type Y. pseudotuberculosis to investigate how IMs contribute to immune responses during intestinal infection. Unexpectedly, CCR2-/- mice did not have reduced survival but retained body weight better and their MLNs cleared Y. pseudotuberculosis faster and with reduced lymphadenopathy compared to controls. Enhanced bacterial clearance in CCR2-/- mice correlated with reduced numbers of IMs in spleens and increased numbers of neutrophils in livers. In situ imaging of MLNs and spleens from CCR2-GFP mice showed that green fluorescent protein-positive (GFP+) IMs accumulated at the periphery of neutrophil-rich Yersinia-containing pyogranulomas. GFP+ IMs colocalized with CD11c+ cells and YopE69-77-specific CD8+ T cells in MLNs, suggesting that IM-derived DCs prime adaptive responses in Yersinia pyogranulomas. Consistently, CCR2-/- mice had reduced numbers of splenic DCs, YopE69-77-specific CD8+ T cells, CD4+ T cells, and B cells in organs and lower levels of serum antibodies to Y. pseudotuberculosis antigens. Our data suggest that IMs differentiate into DCs in MLN pyogranulomas and direct adaptive responses in T cells at the expense of innate immunity during oral Y. pseudotuberculosis infection.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Monócitos/imunologia , Boca/microbiologia , Receptores CCR2/imunologia , Infecções por Yersinia pseudotuberculosis/imunologia , Yersinia pseudotuberculosis/imunologia , Animais , Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Receptores CCR2/genética , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/fisiologia , Infecções por Yersinia pseudotuberculosis/genética , Infecções por Yersinia pseudotuberculosis/microbiologia
17.
J Immunol ; 190(12): 6277-86, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23656736

RESUMO

HSV type 1 (HSV-1)-specific CD8(+) T cells provide immunosurveillance of trigeminal ganglion (TG) neurons that harbor latent HSV-1. In C57BL/6 mice, the TG-resident CD8(+) T cells are HSV specific and maintain a 1:1 ratio of cells recognizing an immunodominant epitope on viral glycoprotein B (gB498-505-Tet(+)) and cells reactive to subdominant epitopes (gB-Tet(-)). The gB-Tet(-) CD8(+) T cells maintain their frequency in TG by balancing a higher rate of proliferation with a correspondingly higher rate of apoptosis. The increased apoptosis is associated with higher expression of programmed death-1 (PD-1) on gB-Tet(-) CD8(+) T cells and the interaction with PD-1 ligand (PD-L1/B7-H1). IFN-γ regulated expression of the PD-1 ligand (PD-L1/B7-H1) on neurons bearing higher copies of latent viral genome. In latently infected TG of B7-H1(-/-) mice, the number and frequency of PD-1(+) gB-Tet(-) CD8(+) T cells increases dramatically, but gB-Tet(-) CD8(+) T cells remain largely nonfunctional and do not provide increased protection from HSV-1 reactivation in ex vivo cultures of latently infected TG. Unlike observations in some chronic infection models, B7-H1 blockade did not increase the function of exhausted gB-Tet(-) CD8 T cells in latently infected TG.


Assuntos
Apoptose/imunologia , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/imunologia , Herpes Simples/imunologia , Latência Viral/imunologia , Animais , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Sobrevivência Celular/fisiologia , Feminino , Citometria de Fluxo , Herpesvirus Humano 1/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Gânglio Trigeminal/virologia
18.
Cell Rep ; 43(5): 114206, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38733584

RESUMO

The interleukin (IL)-22 cytokine can be protective or inflammatory in the intestine. It is unclear if IL-22 receptor (IL-22Ra1)-mediated protection involves a specific type of intestinal epithelial cell (IEC). By using a range of IEC type-specific Il22Ra1 conditional knockout mice and a dextran sulfate sodium (DSS) colitis model, we demonstrate that IL-22Ra1 signaling in MATH1+ cells (goblet and progenitor cells) is essential for maintaining the mucosal barrier and intestinal tissue regeneration. The IL-22Ra1 signaling in IECs promotes mucin core-2 O-glycan extension and induces beta-1,3-galactosyltransferase 5 (B3GALT5) expression in the colon. Adenovirus-mediated expression of B3galt5 is sufficient to rescue Il22Ra1IEC mice from DSS colitis. Additionally, we observe a reduction in the expression of B3GALT5 and the Tn antigen, which indicates defective mucin O-glycan, in the colon tissue of patients with ulcerative colitis. Lastly, IL-22Ra1 signaling in MATH1+ progenitor cells promotes organoid regeneration after DSS injury. Our findings suggest that IL-22-dependent protective responses involve O-glycan modification, proliferation, and differentiation in MATH1+ progenitor cells.


Assuntos
Colite , Sulfato de Dextrana , Interleucina 22 , Interleucinas , Receptores de Interleucina , Animais , Interleucinas/metabolismo , Camundongos , Glicosilação , Colite/metabolismo , Colite/patologia , Colite/induzido quimicamente , Receptores de Interleucina/metabolismo , Mucinas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Humanos , Transdução de Sinais , Camundongos Endogâmicos C57BL , Inflamação/patologia , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos Knockout , Galactosiltransferases/metabolismo , Galactosiltransferases/genética , Células-Tronco/metabolismo
19.
NPJ Vaccines ; 9(1): 116, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914546

RESUMO

Gammaherpesviruses are oncogenic viruses that establish lifelong infections and are significant causes of morbidity and mortality. Vaccine strategies to limit gammaherpesvirus infection and disease are in development, but there are no FDA-approved vaccines for Epstein-Barr or Kaposi sarcoma herpesvirus. As a new approach to gammaherpesvirus vaccination, we developed and tested a replication-deficient virus (RDV) platform, using murine gammaherpesvirus 68 (MHV68), a well-established mouse model for gammaherpesvirus pathogenesis studies and preclinical therapeutic evaluations. We employed codon-shuffling-based complementation to generate revertant-free RDV lacking expression of the essential replication and transactivator protein encoded by ORF50 to arrest viral gene expression early after de novo infection. Inoculation with RDV-50.stop exposes the host to intact virion particles and leads to limited lytic gene expression in infected cells yet does not produce additional infectious particles. Prime-boost vaccination of mice with RDV-50.stop elicited virus-specific neutralizing antibody and effector T cell responses in the lung and spleen. In contrast to vaccination with heat-inactivated WT MHV68, vaccination with RDV-50.stop resulted in a near complete abolishment of virus replication in the lung 7 days post-challenge and reduction of latency establishment in the spleen 16 days post-challenge with WT MHV68. Ifnar1-/- mice, which lack the type I interferon receptor, exhibit severe disease and high mortality upon infection with WT MHV68. RDV-50.stop vaccination of Ifnar1-/- mice prevented wasting and mortality upon challenge with WT MHV68. These results demonstrate that prime-boost vaccination with a gammaherpesvirus that is unable to undergo lytic replication offers protection against acute replication, impairs the establishment of latency, and prevents severe disease upon the WT virus challenge. Our study also reveals that the ability of a gammaherpesvirus to persist in vivo despite potent pre-existing immunity is an obstacle to obtaining sterilizing immunity.

20.
mBio ; 15(2): e0299823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38170993

RESUMO

Cancers associated with the oncogenic gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus, are notable for their constitutive activation of the transcription factor signal transducer and activator of transcription 3 (STAT3). To better understand the role of STAT3 during gammaherpesvirus latency and the B cell response to infection, we used the model pathogen murine gammaherpesvirus 68 (MHV68). Genetic deletion of STAT3 in B cells of CD19cre/+Stat3f/f mice reduced peak MHV68 latency approximately sevenfold. However, infected CD19cre/+Stat3f/f mice exhibited disordered germinal centers and heightened virus-specific CD8 T cell responses compared to wild-type (WT) littermates. To circumvent the systemic immune alterations observed in the B cell-STAT3 knockout mice and more directly evaluate intrinsic roles for STAT3, we generated mixed bone marrow chimeric mice consisting of WT and STAT3 knockout B cells. We discovered a dramatic reduction in latency in STAT3 knockout B cells compared to their WT B cell counterparts in the same lymphoid organ. RNA sequencing of sorted germinal center B cells revealed that MHV68 infection shifts the gene signature toward proliferation and away from type I and type II IFN responses. Loss of STAT3 largely reversed the virus-driven transcriptional shift without impacting the viral gene expression program. STAT3 promoted B cell processes of the germinal center, including IL-21-stimulated downregulation of surface CD23 on B cells infected with MHV68 or EBV. Together, our data provide mechanistic insights into the role of STAT3 as a latency determinant in B cells for oncogenic gammaherpesviruses.IMPORTANCEThere are no directed therapies to the latency program of the human gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus. Activated host factor signal transducer and activator of transcription 3 (STAT3) is a hallmark of cancers caused by these viruses. We applied the murine gammaherpesvirus pathogen system to explore STAT3 function upon primary B cell infection in the host. Since STAT3 deletion in all CD19+ B cells of infected mice led to altered B and T cell responses, we generated chimeric mice with both normal and STAT3-deleted B cells. B cells lacking STAT3 failed to support virus latency compared to normal B cells from the same infected animal. Loss of STAT3 impaired B cell proliferation and differentiation and led to a striking upregulation of interferon-stimulated genes. These findings expand our understanding of STAT3-dependent processes that are key to its function as a pro-viral latency determinant for oncogenic gammaherpesviruses in B cells and may provide novel therapeutic targets.


Assuntos
Infecções por Vírus Epstein-Barr , Gammaherpesvirinae , Infecções por Herpesviridae , Herpesvirus Humano 8 , Rhadinovirus , Sarcoma de Kaposi , Animais , Humanos , Camundongos , Gammaherpesvirinae/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 8/metabolismo , Camundongos Endogâmicos C57BL , Rhadinovirus/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Latência Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA