Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acc Chem Res ; 51(11): 2628-2640, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30406655

RESUMO

The implementation of any chemical reaction in a structurally complex setting ( King , S. M. J. Org. Chem. 2014 , 79 , 8937 ) confronts structurally defined barriers: steric environment, functional group reactivity, product instability, and through-bond electronics. However, there are also practical barriers. Late-stage reactions conducted on small quantities of material are run inevitably at lower than optimal concentrations. Access to late-stage material limits extensive optimization. Impurities from past reactions can interfere, especially with catalytic reactions. Therefore, chemical reactions on which one can rely at the front lines of a complex synthesis campaign emerge from the crucible of total synthesis as robust, dependable, and widely applied. Trost conceptualized "chemoselectivity" as a reagent's selective reaction of one functional group or reactive site in preference to others ( Trost , B. M. Science 1983 , 219 , 245 ). Chemoselectivity and functional group tolerance can be evaluated quickly using robustness screens ( Collins , K. D. Nat. Chem. 2013 , 5 , 597 ). A reaction may also be characterized by its "chemofidelity", that is, its reliable reaction with a functional group in any molecular context. For example, ketone reduction by an electride (dissolving metal conditions) exhibits high chemofidelity but low chemoselectivity: it usually works, but many other functional groups are reduced at similar rates. Conversely, alkene coordination chemistry effected by π Lewis acids can exhibit high chemoselectivity ( Trost , B. M. Science 1983 , 219 , 245 ) but low chemofidelity: it can be highly selective for alkenes but sensitive to the substitution pattern ( Larionov , E. Chem. Commun. 2014 , 50 , 9816 ). In contrast, alkenes undergo reliable, robust, and diverse hydrogen atom transfer reactions from metal hydrides to generate carbon-centered radicals. Although there are many potential applications of this chemistry, its functional group tolerance, high rates, and ease of execution have led to its rapid deployment in complex synthesis campaigns. Its success derives from high chemofidelity, that is, its dependable reactivity in many molecular environments and with many alkene substitution patterns. Metal hydride H atom transfer (MHAT) reactions convert diverse, simple building blocks to more stereochemically and functionally dense products ( Crossley , S. W. M. Chem. Rev. 2016 , 116 , 8912 ). When hydrogen is returned to the metal, MHAT can be considered the radical equivalent of Brønsted acid catalysis-itself a broad reactivity paradigm. This Account summarizes our group's contributions to method development, reagent discovery, and mechanistic interrogation. Our earliest contribution to this area-a stepwise hydrogenation with high chemoselectivity and high chemofidelity-has found application to many problems. More recently, we reported the first examples of dual-catalytic cross-couplings that rely on the merger of MHAT cycles and nickel catalysis. With time, we anticipate that MHAT will become a staple of chemical synthesis.


Assuntos
Hidrogênio/química , Metais/química , Alcenos/química , Catálise , Ciclização , Hidrogenação , Ferro/química , Isomerismo , Cinética , Níquel/química , Termodinâmica
2.
Bioorg Med Chem ; 27(3): 457-469, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30606676

RESUMO

The bromodomain and extra-terminal (BET) family of proteins, consisting of the bromodomains containing protein 2 (BRD2), BRD3, BRD4, and the testis-specific BRDT, are key epigenetic regulators of gene transcription and has emerged as an attractive target for anticancer therapy. Herein, we describe the discovery of a novel potent BET bromodomain inhibitor, using a systematic structure-based approach focused on improving potency, metabolic stability, and permeability. The optimized dimethylisoxazole aryl-benzimidazole inhibitor exhibited high potency towards BRD4 and related BET proteins in biochemical and cell-based assays and inhibited tumor growth in two proof-of-concept preclinical animal models.


Assuntos
Benzimidazóis/farmacologia , Descoberta de Drogas , Isoxazóis/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Fatores de Transcrição/antagonistas & inibidores , Administração Oral , Animais , Benzimidazóis/química , Benzimidazóis/metabolismo , Disponibilidade Biológica , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Isoxazóis/administração & dosagem , Isoxazóis/química , Isoxazóis/metabolismo , Camundongos , Estrutura Molecular , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Domínios Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo
3.
J Am Chem Soc ; 140(38): 12056-12068, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30153002

RESUMO

Cobalt/nickel-dual catalyzed hydroarylation of terminal olefins with iodoarenes builds complexity from readily available starting materials, with a high preference for the Markovnikov (branched) product. Here, we advance a mechanistic model of this reaction through the use of reaction progress kinetic analysis (RPKA), radical clock experiments, and stoichiometric studies. Through exclusion of competing hypotheses, we conclude that the reaction proceeds through an unprecedented alkylcobalt to nickel direct transmetalation. Demonstration of catalytic alkene prefunctionalization, via spectroscopic observation of an organocobalt species, distinguishes this Csp2-Csp3 cross-coupling method from a conventional transmetalation process, which employs a stoichiometric organometallic nucleophile, and from a bimetallic oxidative addition of an organohalide across nickel, described by radical scission and subsequent alkyl radical capture at a second nickel center. A refined understanding of the reaction leads to an optimized hydroarylation procedure that excludes exogenous oxidant, demonstrating that the transmetalation is net redox neutral. Catalytic alkene prefunctionalization by cobalt and engagement with nickel catalytic cycles through direct transmetalation provides a new platform to merge these two rich areas of chemistry in preparatively useful ways.


Assuntos
Alcenos/química , Cobalto/química , Iodobenzenos/química , Níquel/química , Derivados de Benzeno/síntese química , Catálise , Cinética , Modelos Químicos , Compostos Organometálicos/síntese química , Oxirredução
4.
Angew Chem Int Ed Engl ; 55(20): 6079-83, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27094932

RESUMO

The gold-catalyzed enantioselective hydroazidation and hydroamination reactions of allenes are presented herein. ADC gold(I) catalysts derived from BINAM were critical for achieving high levels of enantioselectivity in both transformations. The sense of enantioinduction is reversed for the two different nucleophiles, allowing access to both enantiomers of the corresponding allylic amines using the same catalyst enantiomer.


Assuntos
Alcadienos/química , Complexos de Coordenação/química , Ouro/química , Aminas/química , Catálise , Metano/análogos & derivados , Metano/química , Estereoisomerismo
5.
ACS Cent Sci ; 8(7): 948-954, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35912357

RESUMO

The fungal metabolite collybolide has attracted attention as a non-nitrogenous, potent, and biased agonist of the kappa-opioid receptor (KOR). Here, we report a 10-step asymmetric synthesis of this complex sesquiterpene that enables facile access to either enantiomer. The synthesis relies on a diastereoselective α-benzoyloxylation to install the buried C6 benzoate and avoid irreversible translactonization of the congested, functionally dense core. Neither enantiomer, however, exhibited KOR agonism, indicating that collybolide has been mischaracterized as a KOR agonist. Given the pharmaceutical, medical, and societal interest in collybolide as a next-generation antipruritic and analgesic, this refutation of KOR activity has important ramifications for ongoing studies. Classification of collybolide as a new non-nitrogenous, KOR-selective, potent agonist with the same clinical potential as salvinorin A seems to have been premature.

6.
Chem Sci ; 11(46): 12401-12422, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33520153

RESUMO

Hydrogen atom transfer from a metal hydride (MHAT) has emerged as a powerful, if puzzling, technique in chemical synthesis. In catalytic MHAT reactions, earth-abundant metal complexes generate stabilized and unstabilized carbon-centered radicals from alkenes of various substitution patterns with robust chemoselectivity. This perspective combines organic and inorganic perspectives to outline challenges and opportunities, and to propose working models to assist further developments. We attempt to demystify the putative intermediates, the basic elementary steps, and the energetic implications, especially for cage pair formation, collapse and separation. Distinctions between catalysts with strong-field (SF) and weak-field (WF) ligand environments may explain some differences in reactivity and selectivity, and provide an organizing principle for kinetics that transcends the typical thermodynamic analysis. This blueprint should aid practitioners who hope to enter and expand this exciting area of chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA