RESUMO
BACKGROUND: Alfalfa (Medicago sativa L.) is an essential leguminous forage with high nutrition and strong adaptability. The TIFY family is a plant-specific transcription factor identified in many plants. However, few reports have been reported on the phylogenetic analysis and gene expression profiling of TIFY family genes in alfalfa. RESULT: A total of 84 TIFY genes belonging to 4 categories were identified in alfalfa, including 58 MsJAZs, 18 MsZMLs, 4 MsTIFYs and 4 MsPPDs, respectively. qRT-PCR data from 8 genes in different tissues revealed that most MsTIFY genes were highly expressed in roots. The expression of MsTIFY14 was up-regulated after different times in both thrips-resistant and susceptible alfalfa after thrips feeding, and the expression of the remaining MsTIFYs had a strong correlation with the time of thrips feeding. Different abiotic stresses, including drought, salt, and cold, could induce or inhibit the expression of MsTIFY genes to varying degrees. In addition, the eight genes were all significantly up-regulated by JA and/or SA. Interestingly, MsTIFY77 was induced considerably by all the biotic, abiotic, or plant hormones (JA or SA) except ABA. CONCLUSION: Our study identified members of the TIFY gene family in alfalfa and analyzed their structures and possible functions. It laid the foundation for further research on the molecular functions of TIFYs in alfalfa.
Assuntos
Regulação da Expressão Gênica de Plantas , Medicago sativa , Proteínas de Plantas , Fatores de Transcrição , Animais , Perfilação da Expressão Gênica , Genes de Plantas , Genoma de Planta , Medicago sativa/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: Advanced skin cutaneous melanoma (SKCM) is responsible for the majority of skin cancer-related deaths. Apart from the rare BRAF V600F mutation, which can be targeted with specific drugs, there are currently no other novel effective therapeutic targets. METHODS: We used SMR analysis with cis-expressed quantitative trait locus (cis-eQTL) as the exposure variable and SKCM as the outcome variable to identify potential therapeutic targets for SKCM. Colocalization assays and HEIDI tests are used to test whether SKCM risk and gene expression are driven by common SNPs. Replication analysis further validated the findings, and we also constructed protein-protein interaction networks to explore the relationship between the identified genes and known SKCM targets. Drug prediction and molecular docking further validated the medicinal value of drug targets. Transcriptome differential analysis further validated that there were differences between normal tissues and SKCM for the selected targets. RESULTS: We identified 13 genes significantly associated with the risk of SKCM, including five protective genes and eight harmful genes. The HEIDI test and co-localization analysis further indicates a causal association between genes (SOX4, MAFF) and SKCM, categorized as Class 1 evidence targets. The remaining 11 genes, except for HELZ2 show a moderately causal association with SKCM, categorized as Class 2 evidence targets. Target druggability predictions from DGIdb suggest that SOX4, MAFF, ACSF3, CDK10, SPG7, and TCF25 are likely to be future drug targets. CONCLUSION: The study provides genetic evidence for targeting available drug genes for the treatment of SKCM.
Assuntos
Melanoma , Polimorfismo de Nucleotídeo Único , Neoplasias Cutâneas , Humanos , Melanoma/genética , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/tratamento farmacológico , Transcriptoma , Locos de Características Quantitativas , Perfilação da Expressão Gênica , Melanoma Maligno Cutâneo , Mapas de Interação de Proteínas/genética , Simulação de Acoplamento MolecularRESUMO
BACKGROUND: Drought is one of the main causes of losses in forage crop yield and animal production. Medicago ruthenica (L.) cv. Zhilixing is a high-yielding alfalfa cultivar also known for its high tolerance to drought. We analyzed the transcriptome profile of this cultivar throughout drought stress and recovery and we were able to describe its phased response through the expression profiles of overlapping gene networks and drought-specific genes. RESULTS: The ABA and auxin signal transduction pathways are overlapping pathways in response to drought and drought recovery in forage crops. Medicago ruthenica (L.) cv. Zhilixing adopts different strategies at different degrees of drought stress. On the 9th day of drought, transcriptional regulations related to osmoregulation are enhanced mainly through increased activities of carbohydrate and amino acid metabolism, while photosynthetic activities were reduced to slow down growth. With drought prolonging, on the 12th day of drought, the synthesis of proline and other stored organic substances was suppressed in general. After recovery, Medicago ruthenica synthesizes flavonoids through the flavonoid biosynthesis pathway to remove accumulated ROS and repair the oxidative damage from water stress. In addition, the regulation of circadian rhythm seems to accelerate the drought recovery process. CONCLUSIONS: Medicago ruthenica adapts to drought by regulating the osmoregulatory system and photosynthesis, which appears to involve the ABA and auxin signaling pathways as key regulators. Furthermore, the synthesis of flavonoids and the regulation of the circadian rhythm can accelerate the recovery process. These results enriched our knowledge of molecular responses to drought and drought recovery in Medicago ruthenica and provide useful information for the development of new legume forage grass varieties with improved adaptability to drought stress.
Assuntos
Secas , Medicago , Animais , Medicago/genética , Folhas de Planta/genética , Perfilação da Expressão Gênica , Flavonoides , Ácidos IndolacéticosRESUMO
BACKGROUND: Tillering is a complicated process in plant and is a significant trait that affects biomass and seed yield of bunch grass Psathyrostachys juncea, a typical perennial forage species. To clarify the regulatory mechanisms of tillering in P. juncea and to explore related candidate genes could be helpful to improve the seed and forage yield of perennial gramineous forages. We selected the tiller node tissues of P. juncea for transcriptome sequencing to determine the differentially expressed genes (DEG) between dense and sparse tillering genotypes. The metabolic pathway was studied, candidate genes were screened, and reference genes stability were evaluated. RESULTS: The results showed that approximately 5466 DEGs were identified between the two genotypes with dense and sparse tillers of P. juncea, which significantly differed in tiller number. Tillering regulation pathways analysis suggested that DEGs closely related to the biosynthesis of three plant hormones, namely auxin (IAA), cytokinin (CTK), and strigolactones (SLs), while "biosynthesis of lignin" and "nitrogen metabolism" have remarkable differences between the dense and sparse tillering genotypes. Meanwhile, the reference gene Actin1, having the best stability, was screened from twelve genes with highest expression level and was used in verification of ten tillering related candidate genes. CONCLUSIONS: The tillering mechanism of perennial grass P. juncea was expounded by transcriptome analysis of tiller node tissues. We demonstrated that dense-tillering genotypes may be distinguished by their low expression patterns of genes involved in SL, IAA, and high expression patterns of genes involved in CTK biosynthesis at the tillering stage, and nitrogen metabolism and lignin biosynthesis can also affect the number of tillers. Furthermore, the expression level of ten tillering related candidate genes were verified using Actin1 as reference gene. These candidate genes provide valuable breeding resources for marker assisted selection and yield traits improvement of P. juncea.
Assuntos
Reguladores de Crescimento de Plantas , Transcriptoma , Citocininas , Ácidos Indolacéticos , Lignina , Nitrogênio , Melhoramento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Poaceae/genética , Poaceae/metabolismo , TecnologiaRESUMO
BACKGROUND: The use of heterosis to produce hybrid seeds is a challenge to breeding for improved crop yield. In previous studies, we isolated a male sterile alfalfa hybrid and successfully obtained a genetically stable alfalfa male sterile line through backcrossing, henceforth named MS-4. In this study, we used RNA-seq technology to analyze the transcriptome profiles of the male sterile line (MS-4) and the male fertile line (MF) of alfalfa to elucidate the mechanism of male sterility. RESULTS: We screened a total of 11,812 differentially expressed genes (DEGs) from both MS-4 and MF lines at three different stages of anther development. Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that these DEGs are mainly involved in processes such as energy metabolism, lipid and amino acid metabolism, carbohydrate metabolism, in addition to cell synthesis and aging. The results from protein-protein interaction (PPI) network analysis showed that the ribosomal protein (MS.Gene25178) was the core gene in the network. We also found that transcriptional regulation was an influential factor in the development of anthers. CONCLUSIONS: Our findings provide new insights into understanding of the fertility changes in the male sterile (MS-4) of alfalfa.
Assuntos
Infertilidade Masculina , Infertilidade das Plantas , Flores/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Humanos , Infertilidade Masculina/metabolismo , Masculino , Medicago sativa/genética , Medicago sativa/metabolismo , Melhoramento Vegetal , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , TranscriptomaRESUMO
BACKGROUND: Medicago ruthenica, a wild and perennial legume forage widely distributed in semi-arid grasslands, is distinguished by its outstanding tolerance to environmental stress. It is a close relative of commonly cultivated forage of alfalfa (Medicago sativa). The high tolerance of M. ruthenica to environmental stress makes this species a valuable genetic resource for understanding and improving traits associated with tolerance to harsh environments. RESULTS: We sequenced and assembled genome of M. ruthenica using an integrated approach, including PacBio, Illumina, 10×Genomics, and Hi-C. The assembled genome was 904.13 Mb with scaffold N50 of 99.39 Mb, and 50,162 protein-coding genes were annotated. Comparative genomics and transcriptomic analyses were used to elucidate mechanisms underlying its tolerance to environmental stress. The expanded FHY3/FAR1 family was identified to be involved in tolerance of M. ruthenica to drought stress. Many genes involved in tolerance to abiotic stress were retained in M. ruthenica compared to other cultivated Medicago species. Hundreds of candidate genes associated with drought tolerance were identified by analyzing variations in single nucleotide polymorphism using accessions of M. ruthenica with varying tolerance to drought. Transcriptomic data demonstrated the involvements of genes related to transcriptional regulation, stress response, and metabolic regulation in tolerance of M. ruthenica. CONCLUSIONS: We present a high-quality genome assembly and identification of drought-related genes in the wild species of M. ruthenica, providing a valuable resource for genomic studies on perennial legume forages.
Assuntos
Regulação da Expressão Gênica de Plantas , Medicago , Secas , Medicago/genética , Medicago sativa/genética , Estresse Fisiológico/genéticaRESUMO
BACKGROUND: Sainfoin (Onobrychis viciifolia Scop) is not only a high-quality legume forage, but also a nectar-producing plant. Therefore, the flower color of sainfoin is an important agronomic trait, but the factors affecting its flower phenotype are still unclear. To gain insights into the regulatory networks associated with metabolic pathways of coloration compounds (flavonoids or anthocyanins) and identify the key genes, we conducted a comprehensive analysis of the phenotype, metabolome and transcriptome of WF and AF of sainfoin. RESULTS: Delphinidin, petunidin and malvidin derivatives were the main anthocyanin compounds in the AF of sainfoin. These substances were not detected in the WF of sainfoin. The transcriptomes of WF and AF in sainfoin at the S1 and S3 stages were obtained using the Illumina HiSeq4000 platform. Overall, 10,166 (4273 upregulated and 5893 downregulated) and 15,334 (8174 upregulated and 7160 downregulated) DEGs were identified in flowers at S1 and S3 stages, respectively (WF-VS-AF). KEGG pathway annotations showed that 6396 unigenes were annotated to 120 pathways and contained 866 DEGs at S1 stages, and 6396 unigenes were annotated to 131 pathways and included 1546 DEGs at the S3 stage. Nine DEGs belonging to the "flavonoid biosynthesis"and "phenylpropanoid biosynthesis" pathways involved in flower color formation were identified and verified by RT-qPCR analyses. Among these DEGs, 4CL3, FLS, ANS, CHS, DFR and CHI2 exhibited downregulated expression, and F3H exhibited upregulated expression in the WF compared to the AF, resulting in a decrease in anthocyanin synthesis and the formation of WF in sainfoin. CONCLUSIONS: This study is the first to use transcriptome technology to study the mechanism of white flower formation in sainfoin. Our transcriptome data will be a great enrichment of the genetic information for sainfoin. In addition, the data presented herein will provide valuable molecular information for genetic breeding and provide insight into the future study of flower color polymorphisms in sainfoin.
Assuntos
Fabaceae/genética , Metaboloma , Pigmentação , Pigmentos Biológicos/metabolismo , Transcriptoma , Antocianinas/metabolismo , Fabaceae/química , Fabaceae/metabolismo , Flavonoides/metabolismo , Flores/química , Flores/genética , Flores/metabolismo , FenótipoRESUMO
Male sterility is an important factor in improving crop quality and yield through heterosis breeding. In this study, we analyzed the transcriptomes of male fertile (MF) and male sterile (MS) alfalfa flower buds using the Illumina HiSeq™ 4000 platform. A total of 54.05 million clean reads were generated and assembled into 65,777 unigenes with an average length of 874 bp. The differentially expressed genes (DEGs) between the MF and MS flowers at three stages of pollen development were identified, and there were 3832, 5678 and 5925 DEGs respectively in stages 1, 2 and 3. GO and KEGG functional enrichment analysis revealed 12, 12, 6 and 12 key branch-point genes involved in circadian rhythm, transcription factors, pollen development and flavonoid biosynthesis. Our findings provide novel insights into the mechanism of male sterility in alfalfa. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01026-x.
RESUMO
Objective: To evaluate the efficacy and safety of various first-line initial treatment systemic regimens for patients with unresectable esophageal squamous carcinoma(ESCC), utilizing a network meta-analysis approach. Methods: A comprehensive search for randomized controlled trials focusing on the primary treatment of esophageal cancer ESCC was conducted across multiple databases including PubMed, Embase, Cochrane Library, and Web of Science, up until November 17, 2023. The quality of the included studies was rigorously assessed using Review Manager software. Subsequently, data analysis was meticulously carried out employing R software. The first-line treatment regimens examined were: CD (Cisplatin + Docetaxel), CET-CF (Cetuximab + Cisplatin + Fluorouracil), CF (Cisplatin + Fluorouracil), N-CF (Nivolumab + Cisplatin + Fluorouracil), NI (Nivolumab + Ipilimumab), Nim-CF (Nimotuzumab + Cisplatin + Fluorouracil), P-CF (Pembrolizumab + Cisplatin + Fluorouracil), and Ser-CF (Serplulimab + Cisplatin + Fluorouracil). The Primary endpoints included the overall survival(OS),progression-free survival (PFS),objective response rate (ORR) and disease control rate (DCR).The secondary endpoint was adverse effects(AEs). Results: The analysis encompassed eight studies, incorporating a total of 3,051 patients with untreated esophageal cancer. There are 45 people in the CD regimen,32 in the CET-CF regimen,1,212 in the CF regimen,447 in the N-CF regimen,456 in the NI regimen,53 in the Nim-CF regimen,447 in the P-CF regimen and 368 in the Ser-CF regimen. The network meta-analysis revealed that, in comparison to the CF regimen, the other regimens (CD, CET-CF, N-CF, NI, Nim-CF, P-CF, and Ser-CF) did not demonstrate a statistically significant impact on overall survival (OS) or progression-free survival (PFS). However, Ser-CF potentially offers superior outcomes in terms of OS and PFS when juxtaposed with other regimens. Notably, N-CF was associated with a substantial increase in the objective response rate (ORR), and CET-CF markedly improved the disease control rate (DCR). In terms of adverse effects, N-CF was more likely to cause anorexia, whereas CET-CF was significantly associated with nausea, vomiting, neutropenia, and skin disorders. Conclusion: The current evidence suggests that N-CF may provide the most favorable outcomes in terms of ORR, while CET-CF could be the optimal choice for enhancing DCR in patients with untreated esophageal cancer.
RESUMO
The forage quality of alfalfa (Medicago sativa ) stems is greater than the leaves. Sucrose hydrolysis provides energy for stem development, with starch being enzymatically converted into sucrose to maintain energy homeostasis. To understand the physiological and molecular networks controlling stem development, morphological characteristics and transcriptome profiles in the stems of two alfalfa cultivars (Zhungeer and WL168) were investigated. Based on transcriptome data, we analysed starch and sugar contents, and enzyme activity related to starch-sugar interconversion. Zhungeer stems were shorter and sturdier than WL168, resulting in significantly higher mechanical strength. Transcriptome analysis showed that starch and sucrose metabolism were significant enriched in the differentially expressed genes of stems development in both cultivars. Genes encoding INV , bglX , HK , TPS and glgC downregulated with the development of stems, while the gene encoding was AMY upregulated. Weighted gene co-expression network analysis revealed that the gene encoding glgC was pivotal in determining the variations in starch and sucrose contents between the two cultivars. Soluble carbohydrate, sucrose, and starch content of WL168 were higher than Zhungeer. Enzyme activities related to sucrose synthesis and hydrolysis (INV, bglX, HK, TPS) showed a downward trend. The change trend of enzyme activity was consistent with gene expression. WL168 stems had higher carbohydrate content than Zhungeer, which accounted for more rapid growth and taller plants. WL168 formed hollow stems were formed during rapid growth, which may be related to the redistribution of carbohydrates in the pith tissue. These results indicated that starch and sucrose metabolism play important roles in the stem development in alfalfa.
Assuntos
Medicago sativa , Caules de Planta , Amido , Sacarose , Medicago sativa/genética , Medicago sativa/metabolismo , Medicago sativa/crescimento & desenvolvimento , Amido/metabolismo , Caules de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/genética , Sacarose/metabolismo , Regulação da Expressão Gênica de Plantas , Transcriptoma , Metabolismo dos Carboidratos/genética , Perfilação da Expressão GênicaRESUMO
As one of the environmental factors that seriously affect plant growth and crop production, drought requires an efficient but environmentally neutral approach to mitigate its harm to plants. Soil microbiomes can interact with plants and soil to improve the adverse effects of drought. Medicago ruthenica (L.) is an excellent legume forage with strong drought tolerance, but the key role of microbes in fighting drought stress remains unclear. What kind of flora plays a key role? Is the recruitment of such flora related to its genotype? Therefore, we selected three varieties of M. ruthenica (L.) for drought treatment, analyzed their growth and development as well as their physiological and biochemical characteristics, and performed 16S rRNA high-throughput sequencing analysis on their rhizosphere soils to clarify the variety-mediated response of rhizosphere bacteria to drought stress. It was found that among the three varieties of M. ruthenica (L.), Mengnong No.2, Mengnong No.1 and Zhilixing were subjected to drought stress and showed a reduction in plant height increment of 24.86%, 34.37%, and 31.97% and in fresh weight of 39.19%, 50.22%, and 41.12%, respectively, whereas dry weight was reduced by 23.26%, 26.10%, and 24.49%, respectively. At the same time, we found that the rhizosphere microbial community of Mengnong No. 2 was also less affected by drought, and it was able to maintain the diversity of rhizosphere soil microflora stable after drought stress, while Mennong No. 1 and Zhilixing were affected by drought stress, resulting in a decrease in rhizosphere soil bacterial community diversity indices to 92.92% and 82.27%, respectively. Moreover, the rhizosphere of Mengnon No. 2 was enriched with more nitrogen-fixing bacteria Rhizobium than the other two varieties of M. ruthenica (L.), which made it still have a good ability to accumulate aboveground biomass after drought stress. In conclusion, this study proves that the enrichment process of bacteria is closely related to plant genotype, and different varieties enrich different types of bacteria in the rhizosphere to help them adapt to drought stress, and the respective effects are quite different. Our results provide new evidence for the study of bacteria to improve the tolerance of plants to drought stress and lay a foundation for the screening and study mechanism of drought-tolerant bacteria in the future.
RESUMO
Drought is a major abiotic stress that threatens crop production. Soil microbiomes are thought to play a role in enhancing plant adaptation to various stresses. However, it remains unclear whether soil microbiomes play a key role when plants are challenged by drought and whether different varieties are enriched with specific bacteria at the rhizosphere. In this study, we measured changes in growth phenotypes, physiological and biochemical characteristics of drought-tolerant alfalfa (AH) and drought-sensitive (QS) under sterilized and unsterilized soil conditions with adequate watering and with drought stress, and analyzed the rhizosphere bacterial community composition and changes using 16S rRNA high-throughput sequencing. We observed that the unsterilized treatment significantly improved the growth, and physiological and biochemical characteristics of alfalfa seedlings under drought stress compared to the sterilized treatment. Under drought stress, the fresh and dry weight of seedlings increased by 35.24, 29.04, and 11.64%, 2.74% for unsterilized AH and QS, respectively, compared to sterilized treatments. The improvement was greater for AH than for QS. AH and QS recruited different rhizosphere bacteria when challenged by drought. Interestingly, under well-watered conditions, the AH rhizosphere was already rich in drought-tolerant bacterial communities, mainly Proteobacteria and Bacteroidetes, whereas these bacteria started to increase only when QS was subjected to drought. When drought stress was applied, AH was enriched with more drought-tolerant bacteria, mainly Acidobacteria, while the enrichment was weaker in QS rhizosphere. Therefore, the increase in drought tolerance of the drought-tolerant variety AH was greater than that of the drought-sensitive variety QS. Overall, this study confirmed the key role of drought-induced rhizosphere bacteria in improving the adaptation of alfalfa to drought stress, and clarified that this process is significantly related to the variety (genotype). The results of this study provide a basis for improving drought tolerance in alfalfa by regulating the rhizosphere microbiome.
RESUMO
Psathyrostachys juncea is a long-lived perennial Gramineae grass with dense basal tillers and soft leaves. It is used widely in cold and dry areas of Eurasia and North America to establish grazing pasture and is even used as an ideal plant for revegetation and ecological restoration. Plant architecture, especially tillering traits, is critical for bunch grasses in breeding programs, and these traits in plants are mostly quantitative traits. In this study, the genetic diversity, population structure, and linkage disequilibrium of 480 individual lines were analyzed using 127 pairs of the EST-SSR marker, and a significant association between ten plant-architecture-related traits of P. juncea and molecular markers was found. The results of the genetic diversity analysis showed that the number of observed alleles was 1.957, the number of effective alleles was 1.682, Shannon's information index was 0.554, observed heterozygosity was 0.353, expected heterozygosity was 0.379, and the polymorphism information content was 0.300. A total of 480 individual lines were clustered into five groups based on population genetic structure, principal coordinate analysis, and unweighted pair group method with arithmetic mean analysis (UPGMA). The linkage disequilibrium coefficient (r2) was between 0.00 and 0.68, with an average of 0.04, which indicated a relatively low level of linkage disequilibrium among loci. The results of the association analysis revealed 55 significant marker-trait associations (MTA). Moreover, nine SSR markers were associated with multiple traits. This study provides tools with promising applications in the molecular selection and breeding of P. juncea germplasm.
Assuntos
Variação Genética , Melhoramento Vegetal , Marcadores Genéticos , Fenótipo , PoaceaeRESUMO
Soil salinization is a global environmental issue and a significant abiotic stress that threatens crop production. Root-associated rhizosphere microbiota play a pivotal role in enhancing plant tolerance to abiotic stresses. However, limited information is available concerning the specific variations in rhizosphere microbiota driven by different plant genotypes (varieties) in response to varying levels of salinity stress. In this study, we compared the growth performance of three alfalfa varieties with varying salt tolerance levels in soils with different degrees of salinization. High-throughput 16S rRNA and ITS sequencing were employed to analyze the rhizosphere microbial communities. Undoubtedly, the increasing salinity significantly inhibited alfalfa growth and reduced rhizosphere microbial diversity. However, intriguingly, salt-tolerant varieties exhibited relatively lower susceptibility to salinity, maintaining more stable rhizosphere bacterial community structure, whereas the reverse was observed for salt-sensitive varieties. Bacillus emerged as the dominant species in alfalfa's adaptation to salinity stress, constituting 21.20% of the shared bacterial genera among the three varieties. The higher abundance of Bacillus, Ensifer, and Pseudomonas in the rhizosphere of salt-tolerant alfalfa varieties is crucial in determining their elevated salt tolerance. As salinity levels increased, salt-sensitive varieties gradually accumulated a substantial population of pathogenic fungi, such as Fusarium and Rhizoctonia. Furthermore, rhizosphere bacteria of salt-tolerant varieties exhibited increased activity in various metabolic pathways, including biosynthesis of secondary metabolites, carbon metabolism, and biosynthesis of amino acids. It is suggested that salt-tolerant alfalfa varieties can provide more carbon sources to the rhizosphere, enriching more effective plant growth-promoting bacteria (PGPB) such as Pseudomonas to mitigate salinity stress. In conclusion, our results highlight the variety-mediated enrichment of rhizosphere microbiota in response to salinity stress, confirming that the high-abundance enrichment of specific dominant rhizosphere microbes and their vital roles play a significant role in conferring high salt adaptability to these varieties.
RESUMO
Medicago ruthenica is closely related to Medicago sativa, a commonly cultivated forage. Characterized by its high tolerance to environmental stress, M. ruthenica is a valuable genetic resource. However, low yield limits its large-scale utilization. Leaf morphology, an important agronomic trait, is closely related to forage yield and photosynthetic efficiency. In the presented study, "Correlation of Leaf Morphology and Photosynthetic Performance with Forage Yield in Medicago ruthenica: The Underlying Molecular Mechanisms," comprehensive data analysis revealed a significant positive association between leaf width and leaf area with forage yield in Medicago ruthenica (p < 0.05). The specific cultivar "Mengnong No.1 (MN No.1) had a large leaf area, and its physiological parameters related to photosynthetic characteristics were superior. Anatomical examination revealed that the leaves of MN No.1 had strong palisade tissue and compact cell structure. Subsequent investigations, utilizing small RNA and transcriptome sequencing, discerned critical miRNA-target gene networks that underpin the high photosynthetic efficiency in M. ruthenica. A total of 63 differentially expressed miRNAs (DEMs) were identified, inclusive of several well-characterized miRNAs such as miR408, miR171, and miR398. These miRNAs were predicted to target 55 genes (mRNAs), of which 6 miRNA-target gene pairs, particularly those involving miR408and miR171, exhibited inverse expression patterns. Among the six postulated miRNA-target gene pairs, the targeted cleavage of LACCASE5 (LAC5) by miR408 was conclusively validated through degradome sequencing, with the cleavage site pinpointed between the 9th and 10th nucleotides from the 5'end of miR408 via the 5'-RLM-RACE assay. Therefore, it is posited that the miR408-MrLAC5 module constitutes a central mechanism in fostering high photosynthetic efficiency in M. ruthenica. Moreover, these findings also provide valuable information for further study of the regulatory genes and miRNA functions of forage yield in legume forage.
RESUMO
Mechanical strength is essential for the upright growth habit, which is one of the most important characteristics of terrestrial plants. Lignin, a phenylpropanoid-derived polymer mainly present in secondary cell walls plays critical role in providing mechanical support. Here, we report that the prostrate-stem cultivar of the legume forage Medicago ruthenica cultivar 'Mengnong No. 1' shows compromised mechanical strength compared with the erect-stem cultivar 'Zhilixing'. The erect-stem cultivar, 'Zhilixing' has significantly higher lignin content, leading to higher mechanical strength than the prostrate-stem cultivar. The low abundance of miRNA397a in the Zhiixing cultivar causes reduced cleavage of MrLAC17 transcript, which results in enhanced expression level of MrLAC17 compared to that in the prostrate-stem cultivar Mengnong No. 1. Complementation of the Arabidopsis lac4 lac17 double mutants with MrLAC17 restored the lignin content to wild-type levels, confirming that MrLAC17 perform an exchangeable role with Arabidopsis laccases. LAC17-mediated lignin polymerization is therefore increased in the 'Zhilixing', causing the erect stem phenotype. Our data reveal the importance of the miR397a in the lignin biosynthesis and suggest a strategy for molecular breeding targeting plant architecture in legume forage.
RESUMO
Medicago ruthenica, important forage in the legume family, possesses high nutritional value and carries abundant tolerance genes. This study used whole-genome data of M. ruthenica to perform a genome-wide analysis of the nucleotide-binding site-leucine-rich repeat receptor (NLR) gene family, which is the largest family of plant disease resistance genes (R genes). A total of 338 NLR genes were identified in the M. ruthenica genome, including 160 typical genes that contained 80 coiled-coil (CC)-NBS-LRR (CNL) genes, 76 toll/interleukin-1 receptor (TIR)-NBS-LRR (TNL) genes, four resistance to powdery mildew 8 (RPW8)-NBS-LRR (RNL) subclass genes, and 178 atypical NLR genes encoding proteins without at least one important domain. Among its eight chromosomes, M. ruthenica chromosomes 3 and 8 contained most of the NLR genes. More than 40% of all NLR genes were located on these two chromosomes, mainly in multigene clusters. The NLR proteins of M. ruthenica had six highly conserved motifs: P-loop, GLPL, RNBS-D, kinase-2, RNBS-C, and MHDV. Phylogenetic analysis revealed that the NLR genes of M. ruthenica formed three deeply separated clades according to the N-terminal domain of the proteins encoded by these genes. Gene duplication and syntenic analysis suggested four gene duplication types in the NLR genes of M. ruthenica, namely, tandem, proximal, dispersed, and segmental duplicates, which involved 189, 49, 59, and 41 genes, respectively. A total of 41 segmental duplication genes formed 23 NLR gene pairs located on syntenic chromosomal blocks mainly between chromosomes 6 and 7. In addition, syntenic analysis between M. truncatula and M. ruthenica revealed 193 gene pairs located on syntenic chromosomal blocks of the two species. The expression analysis of M. ruthenica NLR genes showed that 303 (89.6%) of the NLR genes were expressed in different varieties. Overall, this study described the full NLR profile of the M. ruthenica genome to provide an important resource for mining disease-resistant genes and disease-resistant breeding.
RESUMO
Abiotic stresses affect plant growth and productivity. The outstanding stress resistance of Medicago ruthenica makes it a desirable gene resource to improve the stress tolerance of other plants. The roles of three differently expressed genes [(DEGs) (MrERF, MrbZIP, and MrSURNod)] from M. ruthenica in stress resistance have not been fully elucidated. Therefore, we constructed their expression vectors, transformed them into tobacco, and subjected transgenic lines to abiotic stresses. Through comprehensive bioinformatics, transcriptomic, morphological, and physiological analyses of transgenic lines, we have revealed the critical role of these three DEGs in plant growth and abiotic stress response. The upregulation of genes enhanced the germination rate, biomass, root length number, etc. Additionally, the accumulation of osmolytes increased the activity of antioxidant enzymes. These genes are also associated with improved seed yield, increased branching, and early flowering, thereby shortening the growth period. Potentially, this is one of the ways for tobacco to cope with stress. Furthermore, the resistance of transgenic tobacco expressing MrERF or MrbZIP was better than that with MrSURNod. MrERF and MrbZIP can improve drought and salt tolerance of plants, whereas MrSURNod is beneficial in improving drought and cold resistance. Moreover, MrERF or MrbZIP can promote root elongation and increase the root number, whereas MrSURNod mainly promotes root elongation. This may be the reason why stress resistance conferred by MrSURNod is weaker than that associated with the other two genes. Overall, MrERF, MrbZIP, and MrSURNod positively modulate plant growth and stress tolerance.
RESUMO
Stems are more important to forage quality than leaves in alfalfa. To understand lignin formation at different stages in alfalfa, lignin distribution, anatomical characteristics and transcriptome profile were employed using two alfalfa cultivars. The results showed that the in vitro true digestibility (IVTD) of stems in WL168 was significantly higher than that of Zhungeer, along with the significantly lower neutral detergent fiber (NDF), acid detergent fiber (ADF) and lignin contents. In addition, Zhungeer exhibited increased staining of the xylem areas in the stems of different developmental stages compared to WL168. Interestingly, the stems of WL168 appeared intracellular space from the stage 3, while Zhungeer did not. The comparative transcriptome analysis showed that a total of 1993 genes were differentially expressed in the stem between the cultivars, with a higher number of expressed genes in the stage 4. Of the differentially expressed genes, starch and sucrose metabolism as well as phenylpropanoid biosynthesis pathways were the most significantly enriched pathways. Furthermore, expression of genes involved in lignin biosynthesis such as PAL, 4CL, HCT, CAD, COMT and POD coincides with the anatomic characteristics and lignin accumulation. These results may help elucidate the regulatory mechanisms of lignin biosynthesis and improve forage quality in alfalfa.
RESUMO
Russian wildrye, Psathyrostachys junceus (Fisch.) Nevski, is widely distributed in the high latitude areas of Eurasia. It plays an important role in grassland ecosystem maintenance, as well as being a valuable palatable forage species for livestock and wildlife. Russian wildrye germplasm has rich phenotypic and genetic diversity and has potential for improvement through crossbreeding. In this study, fifteen Russian wildrye hybrid combinations were produced and one F1 population with 123 putative hybrids was obtained by crossing two individual plants with significant differences in nutritional characteristics and reproductive tiller number. Twelve phenotypic traits of the F1 population were measured for three consecutive years, and ten of the twelve traits were in line with the genetic characteristics of quantitative traits. Hybrid superiority was revealed among F1 hybrids in both nutritional and reproductive traits. One non-recurrent parent plant with the highest PCA-synthesis score was selected and used to make a backcross with the 'BOZOISKY SELECT' male parent, and 143 putative BC1 hybrids were obtained. Sixteen pairs of EST-SSR primers were randomly selected from polymorphic primers derived from different expressed tiller trait related genes. Three primer pairs that amplified both the paternal and maternal characteristic band were used to assess the purity of the F1 population, and three primer pairs (with one shared primer pair) were used to identify the BC1 population. The hybrid purity was 96.75% for the F1 population and 95.80% for the BC1 population, and the results were confirmed by self-fertility test through bagging isolation. The genetic similarity coefficients between the F1 progeny and the male parent ranged from 0.500 to 0.895, and those between the BC1 progeny and the male parent ranged from 0.667 to 0.939. A subset of individuals in the BC1 population had closer genetic distance to the recurrent parent, and genetic variation within the BC1 population decreased compared to the F1 population.