Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Pharm Bull (Tokyo) ; 68(9): 837-847, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32879224

RESUMO

Dengzhan Xixin injection (DZXXI), a herbal product prepared from a Chinese herb called Erigeron breviscapus, is a classical and traditional therapeutic for cadiovascular diseases (CVDs), including coronary heart disease (CHD), angina, and stroke, etc. However, its potential pharmacology mechanism against CVDs remains unclear. In this paper, a systems pharmacology-based strategy is presented for predicting drug targets and understanding therapeutic mechanisms of DZXXI against CVDs. The main ingredients were identified by HPLC-diode array detector (DAD). The target fishing was performed on the PharmMapper Server (http://lilab-ecust.cn/pharmmapper/). Potential targets were confirmed by two molecular docking tools, Sybyl-X 1.3 and Ledock to ensure the accuracy. The resulting target proteins were applied as baits to fish their related diseases and pathways from the molecular annotation system (MAS 3.0, http://bioinfo.capitalbio.com/mas3/) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database (http://www.genome.jp/kegg/). Network generation and topological analysis were performed in Cytoscape 3.6.0. 15 main ingredients from DZXXI were identified. Forty five putative drug targets and 50 KEGG pathways, which have highly relevance to the therapeutic effects of DZXXI against CVDs, were then obtained. The systems analysis suggested that DZXXI could attenuate cardiac fibrosis, regulate cardiac contractility, and preserve heart function in adverse cardiac remodeling; meanwhile DZXXI also could have the function of activating blood circulation and dilating blood vessels. DZXXI exerts its therapeutic effects on CVDs possibly through multi-targets including CMA1, epidermal growth factor receptor (EGFR), phenylalanine-4-hydroxylase (PAH), SRC, F7, etc., and multi-pathways including Focal adhesion, mitogen-activated protein kinase (MAPK) signaling pathway, complement and coagulation cascades, Wnt signaling pathway, vascular endothelial growth factor (VEGF) signaling pathway, Renin-angiotensin system, etc.


Assuntos
Biologia Computacional , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Erigeron/química , Farmacologia/métodos , Biologia de Sistemas/métodos , Doenças Cardiovasculares/tratamento farmacológico , Cromatografia Líquida de Alta Pressão , Humanos , Simulação de Acoplamento Molecular , Fitoterapia , Software
2.
Molecules ; 24(6)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897711

RESUMO

Oxidative stress plays an important role in the pathogenesis of myocardial infarction (MI). Schisandra chinensis bee pollen extract (SCBPE) possesses powerful antioxidant capacity. This study aimed to further explore the antioxidative and cardioprotective effects of SCBPE on acute MI induced by isoprenaline (ISO) in rats. The rats were intragastrically administrated with SCBPE (600, 1200, or 1800 mg/kg/day) and Compound Danshen dropping pills (270 mg/kg/day) for 30 days, then subcutaneously injected with ISO (65 mg/kg/day) on the 29th and 30th day. Compared with the model group, pretreatment with middle and high doses of SCBPE significantly reduced serum aspartate transaminase, lactate dehydrogenase, and creatine kinase activities and increased myocardial superoxide dismutase, glutathione peroxidase, and catalase activities. The histopathologic aspects showed that pathological heart change was found in the model group and reduced to varying degrees in the SCBPE groups. Moreover, the protein expression of nuclear factor-erythroid 2-related factor 2 (Nrf-2), heme oxygenase-1 (HO-1), and Bcl2 in the heart increased in the SCBPE groups, while that of Bax decreased compared to the model group. Besides this, uridine was isolated from S. chinensis bee pollen for the first time. This study could provide a scientific basis for using Schisandra chinensis bee pollen as a functional food for the prevention of MI.


Assuntos
Isoproterenol/toxicidade , Infarto do Miocárdio/prevenção & controle , Pólen/química , Schisandra/química , Animais , Antioxidantes/metabolismo , Glutationa Peroxidase/metabolismo , Masculino , Malondialdeído/imunologia , Malondialdeído/metabolismo , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo
3.
Drug Metab Rev ; 50(2): 161-192, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29258334

RESUMO

Traditional Chinese medicines (TCMs) have a long history for safely treating human diseases. Unlike western medicine, TCMs usually contain multiple components synergistically and holistically acting on the diseases. It remains a big challenge to represent rationally the in vivo process of multiple components of TCMs for understanding the relationship between administration and therapeutic effects. For years, efforts were always made to face the challenge, and the achievements were obvious. Here, we give an comprehensive overview of the recent investigation progress (from 2015 to 2017, except the part of 'integrated pharmacokinetics of TCMs' from 2014 to 2017 and the part of 'reverse pharmacokinetics in drug discovery from natural medicines' in 2014) on pharmacokinetics of TCMs, mainly referring to the following six aspects: (1) classical pharmacokinetic studies on TCMs; (2) absorbed components and metabolites identification of TCMs; (3) pharmacokinetic herb-drug interactions and herb-herb interactions with TCMs; (4) integrated pharmacokinetics of TCMs; (5) pharmacokinetic and pharmacodynamic combination studies to dissect the action mechanisms of TCMs; and (6) reverse pharmacokinetics in drug discovery from natural medicines. Finally, based on the insights from the recent progress and our latest efforts, we propose new perspectives on the integrated pharmacokinetics of TCMs.


Assuntos
Medicamentos de Ervas Chinesas/farmacocinética , Animais , Medicamentos de Ervas Chinesas/farmacologia , Interações Ervas-Drogas , Humanos , Medicina Tradicional Chinesa
4.
Molecules ; 24(1)2018 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-30585201

RESUMO

This study has developed a reliable and precise high performance liquid chromatography-tandem mass spectrometry method for the simultaneous determination of five phenolic acids and four flavonoid glycosides in rat plasma after a single intravenous administration of Kudiezi injection (KI). Chromatographic separation was carried out on an Ultimate®XB-C18 column (4.6 × 100 mm, 3.5 µm) using a gradient elution program with a mobile phase consisting of water containing 0.5% acetic acid and acetonitrile at a flow rate of 0.6 mL/min. Detection was performed on a triple-quadrupole tandem mass spectrometry using multiple reaction monitoring in negative electrospray ionization mode. The calibration curves of all analytes showed good linearity (R² > 0.990). The results of selectivity, intra-day and inter-day precisions, extraction recoveries, matrix effects and stability were satisfactory. Pharmacokinetic parameters showed that luteolin-7-O-ß-d-gentiobioside, luteolin-7-O-ß-d-glucuronide, luteolin-7-O-ß-d-glucoside and apigenin-7-O-ß-d-glucuronide were eliminated quickly (0.07 h < t1/2 < 0.66 h), whereas 5-caffeoylquinic acid, caftaric acid, chlorogenic acid, 4-caffeoylquinic acid and caffeic acid were eliminated relatively slowly (2.22 h < t1/2 < 6.09 h) in rat blood. The pharmacokinetic results would be valuable to identify bioactive constituents, elucidate mechanisms of pharmacological actions or adverse drug reactions and guide the rational clinical use of KI.


Assuntos
Medicamentos de Ervas Chinesas/farmacocinética , Flavonoides/sangue , Glicosídeos/sangue , Hidroxibenzoatos/sangue , Administração Intravenosa , Animais , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/administração & dosagem , Masculino , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
5.
Luminescence ; 32(4): 588-595, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27860193

RESUMO

In this article, a DPPH·-luminol chemiluminescence (CL) system was reported and the CL mechanism was discussed according to the CL kinetic properties after sequence injecting DPPH· into the DPPH·-luminol reaction mixture. It was observed that scutellarin could inhibit the CL response of the DPPH·-luminol system. Based on this observation, a simple and rapid flow injection CL method was developed for the determination of scutellarin using the inhibition effect in alkaline medium. The optimized chemical conditions for the CL reaction were 5 × 10-6  mol/L DPPH· and 1.0 × 10-4  mol/L luminol in 0.01 mol/L NaOH. Under optimized conditions, the CL intensity was inversely proportional to the concentration of scutellarin over the ranges 5-2000 and 40-3200 ng/ml in pharmaceutical injection and rat plasma, respectively. The limits of detection (S/N = 3) were 5 and 40 ng/ml in preparations and rat plasma, respectively. Furthermore, the precision, recovery and stability of the validated method were acceptable for the determination of scutellarin in both pharmaceutical injections and rat plasma. The presented method was successfully applied in the determination of scutellarin in pharmaceutical injections and real rat plasma samples.


Assuntos
Apigenina/análise , Compostos de Bifenilo/química , Análise de Injeção de Fluxo/métodos , Glucuronatos/análise , Luminol/química , Picratos/química , Animais , Apigenina/sangue , Glucuronatos/sangue , Limite de Detecção , Substâncias Luminescentes/química , Medições Luminescentes/métodos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
6.
Molecules ; 22(2)2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28230759

RESUMO

Selaginella doederleinii Hieron has been traditionally used as a folk antitumor herbal medicine in China. In this paper, the phytochemical components of the total biflavonoids extract from S. doederleinii were studied by using high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF MS/MS) in negative ion mode, and their in vitro and in vivo anticancer effects were evaluated. Four types of biflavonoids from S. doederleinii, including IC3'-IIC8'', IC3'-IIC6'', IC3'-IIC3''', and C-O linked biflavonoids were examined originally using QTOF MS/MS. The fragmentation behavior of IC3'-IIC3''' linked biflavonoids was reported for the first time. A total of twenty biflavonoids were identified or tentatively characterized and eight biflavonoids were found from S. doederleinii for the first time. Furthermore, the 3-(4,5-Dimethyl-2-thizolyl)-2,5-diphenyltertazolium bromide (MTT) assay and xenograft model of mouse lewis lung cancer(LLC) in male C57BL/6 mice revealed favorable anticancer properties of the total biflavonoids extracts from S. doederleinii. The results of this work could provide useful knowledge for the identification of biflavonoids in herbal samples and further insights into the chemopreventive function of this plant.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Biflavonoides/química , Biflavonoides/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Selaginellaceae/química , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Masculino , Melanoma Experimental , Camundongos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
7.
Planta Med ; 82(3): 217-23, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26576031

RESUMO

Chrysocauloflavone I, an unfrequent biflavonoid, was purified from Selaginella doederleinii in this study. It showed cytotoxic effects on three human cancer cells, NCI-H1975, A549, and HepG-2, in vitro. In silico assessment of the physicochemical properties was performed for predicting the permeability and intestinal absorption of the tested compound. Subsequently, a rapid, sensitive, and specific high-performance liquid chromatography method was developed for determination of the compound in different biological samples to ascertain the pharmacokinetics, tissue distribution, and protein binding profiles of this active ingredient in rats. After intravenous dosing of chrysocauloflavone I at different levels (10 and 20 mg/kg), the elimination half-life was approximately 85 min, and the AUC0-∞ increased with the dose from 148.52 mg/L × min for 10 mg/kg to 399.01 mg/L × min for 20 mg/kg. After single intravenous dosing (20 mg/kg), chrysocauloflavone I was detected in all tissues studied with higher levels in the heart, blood, and lungs. The results of equilibrium dialysis indicated a very high protein binding degree (over 97%) for chrysocauloflavone I. After intragastric administration of 100 mg/kg chrysocauloflavone I to rats, no parent drug was detected in the rat plasma. This is the first report of the favorable bioactivities, plasma pharmacokinetics, tissue distribution, and protein binding profiles of the rare biflavone chrysocauloflavone I.


Assuntos
Antineoplásicos Fitogênicos/farmacocinética , Biflavonoides/farmacocinética , Extratos Vegetais/farmacocinética , Plantas Medicinais/química , Selaginellaceae/química , Animais , Biflavonoides/farmacologia , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Absorção Intestinal , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
8.
Xenobiotica ; 45(11): 999-1008, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26084374

RESUMO

1. Several pharmacological effects have been revealed on isoorientin, suggesting its potential medicinal prospects. The metabolic and plasma pharmacokinetic profiles of isoorientin were investigated in rats. 2. For intra-gastric gavage, parent drug and three metabolites were detected in urine and feces by HPLC-MS/MS, but only one metabolite was found in plasma and identified as isoorientin 3'- or 4'-O-sulfate (M1) according to MS and UV absorbance spectra. 3. After a single i.v. administration of isoorientin (5, 10, or 15 mg/kg B.W.) in rats, linear pharmacokinetic property was observed with favorable terminal half-lives (1.67 ± 1.32-2.07 ± 0.50 h). After a single p.o. administration of isoorientin (150 mg/kg B.W.) in rats, plasma isoorientin concentration was low, but the concentration of M1 was comparatively high. Low systemic exposure of oral isoorientin in rats could result from its low aqueous solubility and extensive first-pass metabolism, and plasma concentration of M1 can be used as a biomarker of isoorientin intake. Isoorientin showed low oral bioavailability (8.98 ± 1.07%), and had about 6% or 45% dose recovery in urine or feces, respectively, 72 h after intra-gastric gavage. 4. These studies are the first to describe the pharmacokinetics of isoorientin via i.v. or p.o. dosing, providing important information for understanding its process in vivo.


Assuntos
Luteolina/farmacologia , Luteolina/farmacocinética , Administração Intravenosa , Administração Oral , Animais , Masculino , Plasma/metabolismo , Ratos , Ratos Sprague-Dawley
9.
BMC Complement Altern Med ; 15: 225, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26169497

RESUMO

BACKGROUND: For a long time, honey was purportedly helpful to prevent drunkenness and relieve hangover symptoms. However, few of the assertions have experienced scientific assessment. The present study examined the effects of honey on intoxicated male mice. METHODS: Low or high doses of lychee flower honey (2.19 or 4.39 g/kg body weight, respectively) were single orally administrated 30 min before the ethanol intoxication of mice, followed by recording the locomotor activity by autonomic activity instrument and observing the climbing ability after alcohol. On the other hand, 2.19 g/kg honey was single orally administrated 5 min after the ethanol intoxication of mice, followed by determining the ethanol concentration in mice blood. In addition, subacute alcoholism mice models were developed and after the treatment of 2.19 g/kg honey s.i.d for successive three days, the level of serum malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) activity were detected in the models. RESULTS: Both of the two doses of honey increased the autonomic activity of alcoholized mice. Furthermore, the treatment of 2.19 g/kg honey could decrease significantly the blood ethanol concentration in intoxicated mice. The anti-intoxication activity of honey could be due to the effect of the fructose contained in the honey. Meanwhile, honey could not affect the serum MDA level and GSH-Px activity in alcoholism mice models. CONCLUSION: Honey indeed possesses anti-intoxication activity.


Assuntos
Intoxicação Alcoólica/sangue , Concentração Alcoólica no Sangue , Glutationa Peroxidase/sangue , Mel , Malondialdeído/sangue , Animais , Modelos Animais de Doenças , Etanol/administração & dosagem , Etanol/sangue , Masculino , Camundongos
10.
Drug Des Devel Ther ; 18: 2745-2760, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974120

RESUMO

Purpose: Bee pollen possesses favorable anticancer activities. As a medicinal plant source, Schisandra chinensis bee pollen (SCBP) possesses potential pharmacological properties, such as reducing cisplatin-induced liver injury, but its anti-liver cancer effect is still rarely reported. This paper aims to investigate the effect and mechanism of SCBP extract (SCBPE) on hepatocellular carcinoma HepG2 cells. Methods: The effect of SCBPE on cell proliferation and migration of HepG2 cells was evaluated based on MTT assay, morphology observation, or scratching assay. Furthermore, tandem mass tag-based quantitative proteomics was used to study the effect mechanisms. The mRNA expression levels of identified proteins were verified by RT-qPCR. Results: Tandem mass tag-based quantitative proteomics showed that 61 differentially expressed proteins were obtained in the SCBPE group compared with the negative-control group: 18 significantly downregulated and 43 significantly upregulated proteins. Bioinformatic analysis showed the significantly enriched KEGG pathways were predominantly ferroptosis-, Wnt-, and hepatocellular carcinoma-signaling ones. Protein-protein interaction network analysis and RT-qPCR validation revealed SCBPE also downregulated the focal adhesion-signaling pathway, which is abrogated by PF-562271, a well-known inhibitor of FAK. Conclusion: This study confirmed SCBPE suppressed the cell proliferation and migration of hepatocellular carcinoma HepG2 cells, mainly through modulation of ferroptosis-, Wnt-, hepatocellular carcinoma-, and focal adhesion-signaling pathways, providing scientific data supporting adjuvant treatment of hepatocellular carcinoma using SCBP.


Assuntos
Carcinoma Hepatocelular , Movimento Celular , Proliferação de Células , Ferroptose , Neoplasias Hepáticas , Pólen , Schisandra , Humanos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Células Hep G2 , Animais , Schisandra/química , Pólen/química , Ferroptose/efeitos dos fármacos , Abelhas/química , Adesões Focais/efeitos dos fármacos , Adesões Focais/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Transdução de Sinais/efeitos dos fármacos , Produtos Biológicos , Polifenóis
11.
J Ginseng Res ; 48(4): 395-404, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39036738

RESUMO

Background: Ginsenoside Rg1 (Rg1) is one of the main active components in Chinese medicines, Panax ginseng and Panax notoginseng. Research has shown that Rg1 has a protective effect on the cardiovascular system, including anti-myocardial ischemia-reperfusion injury, anti-apoptosis, and promotion of myocardial angiogenesis, suggesting it a potential cardiovascular agent. However, the protective mechanism involved is still not fully understood. Methods: Based on network pharmacology, ligand-based protein docking, proteomics, Western blot, protein recombination and spectroscopic analysis (UV-Vis and fluorescence spectra) techniques, potential targets and pathways for Rg1 against myocardial ischemia (MI) were screened and explored. Results: An important target set containing 19 proteins was constructed. Two target proteins with more favorable binding activity for Rg1 against MI were further identified by molecular docking, including mitogen-activated protein kinase 1 (MAPK1) and adenosine kinase (ADK). Meanwhile, Rg1 intervention on H9c2 cells injured by H2O2 showed an inhibitory oxidative phosphorylation (OXPHOS) pathway. The inhibition of Rg1 on MAPK1 and OXPHOS pathway was confirmed by Western blot assay. By protein recombination and spectroscopic analysis, the binding reaction between ADK and Rg1 was also evaluated. Conclusion: Rg1 can effectively alleviate cardiomyocytes oxidative stress injury via targeting MAPK1 and ADK, and inhibiting oxidative phosphorylation (OXPHOS) pathway. The present study provides scientific basis for the clinical application of the natural active ingredient, Rg1, and also gives rise to a methodological reference to the searching of action targets and pathways of other natural active ingredients.

12.
Front Pharmacol ; 13: 1001553, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238572

RESUMO

Bee venom (BV), a type of defensive venom, has been confirmed to have favorable activities, such as anti-tumor, neuroprotective, anti-inflammatory, analgesic, anti-infectivity effects, etc. This study reviewed the recent progress on the pharmacological effects and mechanisms of BV and its main components against cancer, neurological disorders, inflammatory diseases, pain, microbial diseases, liver, kidney, lung and muscle injury, and other diseases in literature during the years 2018-2021. The related target proteins of BV and its main components against the diseases include Akt, mTOR, JNK, Wnt-5α, HIF-1α, NF-κB, JAK2, Nrf2, BDNF, Smad2/3, AMPK, and so on, which are referring to PI3K/Akt/mTOR, MAPK, Wnt/ß-catenin, HIF-1α, NF-κB, JAK/STAT, Nrf2/HO-1, TrkB/CREB/BDNF, TGF-ß/Smad2/3, and AMPK signaling pathways, etc. Further, with the reported targets, the potential effects and mechanisms on diseases were bioinformatically predicted via Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, disease ontology semantic and enrichment (DOSE) and protein-protein interaction (PPI) analyses. This review provides new insights into the therapeutic effects and mechanisms of BV and its main components on diseases.

13.
J Ginseng Res ; 46(1): 39-53, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35058726

RESUMO

Ginsenoside Rb1 (Rb1), one of the most important ingredients in Panax ginseng Meyer, has been confirmed to have favorable activities, including reducing antioxidative stress, inhibiting inflammation, regulating cell autophagy and apoptosis, affecting sugar and lipid metabolism, and regulating various cytokines. This study reviewed the recent progress on the pharmacological effects and mechanisms of Rb1 against cardiovascular and nervous system diseases, diabetes, and their complications, especially those related to neurodegenerative diseases, myocardial ischemia, hypoxia injury, and traumatic brain injury. This review retrieved articles from PubMed and Web of Science that were published from 2015 to 2020. The molecular targets or pathways of the effects of Rb1 on these diseases are referring to HMGB1, GLUT4, 11ß-HSD1, ERK, Akt, Notch, NF-κB, MAPK, PPAR-γ, TGF-ß1/Smad pathway, PI3K/mTOR pathway, Nrf2/HO-1 pathway, Nrf2/ARE pathway, and MAPK/NF-κB pathway. The potential effects of Rb1 and its possible mechanisms against diseases were further predicted via Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and disease ontology semantic and enrichment (DOSE) analyses with the reported targets. This study provides insights into the therapeutic effects of Rb1 and its mechanisms against diseases, which is expected to help in promoting the drug development of Rb1 and its clinical applications.

14.
Antioxidants (Basel) ; 12(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36670950

RESUMO

Bee pollen possesses an anti-cardiomyocyte injury effect by reducing oxidative stress levels and inhibiting inflammatory response and apoptosis, but the possible effect mechanism has rarely been reported. This paper explores the effect of the extract of lotus bee pollen (LBPE) on cardiomyocyte hypertrophy (CH) and its mechanism. The main components of LBPE were identified via UPLC-QTOF MS. An isoproterenol-induced rat H9c2 CH model was subsequently used to evaluate the protection of LBPE on cells. LBPE (100, 250 and 500 µg∙mL-1) reduced the surface area, total protein content and MDA content, and increased SOD activity and GSH content in CH model in a dose-dependent manner. Meanwhile, quantitative real-time PCR trials confirmed that LBPE reduced the gene expression levels of CH markers, pro-inflammatory cytokines and pro-apoptosis factors, and increased the Bcl-2 mRNA expression and Bcl-2/Bax ratio in a dose-dependent manner. Furthermore, target fishing, bioinformatics analysis and molecular docking suggested JAK2 could be a pivotal target protein for the main active ingredients in the LBPE against CH. Ultimately, Western blot (WB) trials confirmed that LBPE can dose-dependently inhibit the phosphorylation of JAK2 and STAT3. The results show that LBPE can protect against ISO-induced CH, possibly via targeting the JAK2/STAT3 pathway, also suggesting that LBPE may be a promising candidate against CH.

15.
Front Pharmacol ; 13: 1062026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506545

RESUMO

Safflower injection (SI), a water-extract preparation from safflower (Carthamus tinctorius L.), has been widely used for the treatment of cardio-cerebrovascular diseases. This work aims to develop an approach for identifying PK markers of cardiovascular herbal medicines using SI as a case study. Firstly, qualitative and quantitative analyses were performed to reveal ingredients of the preparation via HPLC-MS. Subsequently, multiple PK ingredients and integrated PK investigations were carried out to ascertain ingredients with favorable PK properties (e.g., easily detected at conventional PK time points and high system exposure) for the whole preparation. Next, ingredients against cardiovascular diseases (CVDs) in the preparation were predicted with target fishing and system pharmacology studies. Finally, ingredients with favorable PK properties, satisfactory PK representativeness for the preparation, and high relevance to CVDs were considered as potential PK markers. Their therapeutic effect was further evaluated using the H2O2-induced H9c2 cardiomyocyte-injured model and a proteomics study to identify objective PK markers. As results, it disclosed that SI mainly contains 11 ingredients. Among them, five ingredients, namely, hydroxysafflor yellow A (HSYA), syringin (SYR), p-coumaric acid (p-CA), scutellarin (SCU), and p-hydroxybenzaldehyde (p-HBA), showed favorable PK properties. HSYA, SYR, and rutin (RU) were predicted to show high relevance to CVDs and screened as potential PK markers. However, only HSYA and SYR were confirmed as therapeutic ingredients against CVDs. Combined with these findings, only HSYA demonstrated satisfactory representativeness on PK properties and therapeutic effects of multiple ingredients of the preparation, thereby indicating that HSYA is a potential PK marker for the SI. The results of this study can provide a reference for the characterization of PK markers for traditional Chinese medicines.

16.
Phytochem Anal ; 22(1): 66-73, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20799274

RESUMO

INTRODUCTION: Ixeris sonchifolia (Bunge) Hance, a folk medicine, has been widely used in China for its anti-inflammatory and haemostatic effects. However, the miscellaneous component composition of this herbal medicine is not well known. OBJECTIVE: To develop a fast and comprehensive analytical method for the characterisation of various components from I. Sonchifolia, as a tool for the quality control of the herb and its related preparations. METHODOLOGY: Ixeris sonchifolia samples were extracted with 60% aqueous methanol, purified by solid-phase extraction and then analysed by the combinatorial use of HPLC-TOFMS and HPLC-ITMS. RESULTS: A total of six sesquiterpene lactones, six phenolic acids and seven flavonoids were identified or tentatively characterised. Five of them were reported for the first time in I. sonchifolia and, in particular, two amino acid-sesquiterpene lactone conjugates, 11,13-dihydro-13-prolyl-ixerin Z and 11,13-dihydro-13-prolyl-ixerin Z(1), that were first found in this plant source. CONCLUSION: A global profile of I. sonchifolia constituents was described, which could be useful for the quality control of this herb and its related preparations. The employed combination of HPLC-TOFMS and HPLC-ITMS could also be a promising tool for the analysis of other herbal medicines containing sesquiterpene lactones, phenolic acids or flavonoids.


Assuntos
Asteraceae/química , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Flavonoides/química , Hidroxibenzoatos/química , Lactonas/química , Estrutura Molecular , Sesquiterpenos/química
17.
RSC Adv ; 11(58): 36511-36517, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35494378

RESUMO

Currently, coronavirus disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 has posed an enormous threat to public health worldwide. An andrographolide sulfonates preparation, named Xiyanping injection in Chinese, which was prepared from the aqueous extract of Andrographis paniculata (Burm. F.) Nees, showed favorable therapeutic effectiveness on COVID-19, suggesting A. paniculata could contain powerful therapeutic ingredients against COVID-19. In this study, to search for the potential drug candidates for COVID-19 in the herb, 68 potential target proteins and 24 active ingredients from A. paniculata were screened out using TCMSP, STP, Genecards and TTD databases firstly. A. paniculata-Compound-Target network constructed by cytoscape software showed that the protein targets PTGS2, EGFR, MAPK14, etc. had a high network relevance value. GO and KEGG enrichment analysis indicated that the 24 compounds in A. paniculata might exert their therapeutic effects by the biological processes, cellular response to biotic stimulus, response to lipopolysaccharide, response to molecule of bacterial origin, etc. And AGE-RAGE signaling pathway in diabetic complications (hsa04933), Kaposi sarcoma-associated herpesvirus infection (hsa05167), Human cytomegalovirus infection (hsa05163), etc. were predicted as the most significant effect pathways. Andrographidine C (MOL008223) and andrographolide (MOL008232) were found with strong binding affinity to the target active sites of the potential targets by molecular docking. Ultimately, the application of molecular dynamics simulations demonstrated that andrographidine C could bind well to the ACE2 and PIK3CG proteins. This research identified novel molecules against COVID-19 for developing natural medicines from A. paniculate and also provides a possible explanation for the molecular mechanisms of Xiyanping Injection against COVID-19.

18.
Front Pharmacol ; 12: 778847, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819867

RESUMO

Tanshinone IIA (Tan IIA) is an important characteristic component and active ingredient in Salvia miltiorrhiza, and its various aspects of research are constantly being updated to explore its potential application. In this paper, we review the recent progress on pharmacological activities and the therapeutic mechanisms of Tan IIA according to literature during the years 2015-2021. Tan IIA shows multiple pharmacological effects, including anticarcinogenic, cardiovascular, nervous, respiratory, urinary, digestive, and motor systems activities. Tan IIA modulates multi-targets referring to Nrf2, AMPK, GSK-3ß, EGFR, CD36, HO-1, NOX4, Beclin-1, TLR4, TNF-α, STAT3, Caspase-3, and bcl-2 proteins and multi-pathways including NF-κB, SIRT1/PGC1α, MAPK, SREBP-2/Pcsk9, Wnt, PI3K/Akt/mTOR pathways, TGF-ß/Smad and Hippo/YAP pathways, etc., which directly or indirectly influence disease course. Further, with the reported targets, the potential effects and possible mechanisms of Tan IIA against diseases were predicted by bioinformatic analysis. This paper provides new insights into the therapeutic effects and mechanisms of Tan IIA against diseases.

19.
Front Pharmacol ; 11: 1295, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922299

RESUMO

In this paper, the integrated pharmacokinetics (PK) of an Acanthopanax senticosus extract preparation (ASEP, named as Ciwujia injection in clinic in China) was explored by combining with multi-component PK in rats, virtual screening, systems pharmacology and molecular docking. Firstly, the ingredients in ASEP with high contents and detectable property in rat plasma were selected. Next, the PK study of the resulted ingredients was performed in rats (1.76 ml/kg and 3.52 ml/kg of 5 times concentrated ASEP, single i.v.). Meanwhile, the drug targets for the ingredients screened out were predicted by using a target fishing online server, PharmMapper (http://www.lilab-ecust.cn/pharmmapper/) with a fit filtration threshold of z'-score >0. Next, the network pharmacology, molecular docking, diseases ontology (DO) analysis, and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis were performed respectively for the predicted targets. Finally, the supporting evidences were obtained to characterize the PK markers and carry out the integrated PK study with "plasma-drug concentration sum" or "plasma-drug AUC weighted" methods. As a result, 6 ingredients, involving 5-caffeoylquinic acid (5-CQA), 3-CQA, 4-CQA, protocatechuic acid, eleutheroside B, and gentiopicroside were selected, and their PK profiles were elucidated. The 6 ingredients were highly related to arteriosclerotic cardiovascular disease and atherosclerosis and could mainly interact with similar targets, e.g., GSK3B, PDPK1, PLAU, etc., or pathways, e.g., Insulin, VEGF, FoxO, etc, providing the basis for integrating plasma drug concentration. Ultimately, the 6 ingredients were considered as PK markers and the whole in vivo process of ASEP were characterized. Our study would enhance understanding of the therapeutic effects and mechanisms of ASEP against cardiovascular diseases, and provided useful insights for future integrated PK study on anti-cardiovascular diseases TCM injections.

20.
BMC Complement Med Ther ; 20(1): 274, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912207

RESUMO

BACKGROUND: Schisandra chinensis (Turcz.) Baill bee pollen extract (SCBPE) is often used as a functional food in China due to its good antioxidant property. However, its chemical compositions and effects on H9c2 cardiomyocytes against H2O2-induced cell injury still lacks of reports thus far. This study aimed to characterize the main components of SCBPE and investigate its protective effects against H2O2-induced H9c2 cardiomyocyte injury. METHODS: The main components of SCBPE were analyzed via ultraperformance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF MS/MS). The three main nucleosides in SCBPE were quantitatively analyzed via ultraperformance liquid chromatography-diode array detection. Furthermore, the potential mechanism by which SCBPE exerts protective effects against H2O2-induced H9c2 cardiomyocyte injury was explored for the first time via cell survival rate measurements; cell morphological observation; myocardial superoxide dismutase (SOD) activity and malondialdehyde (MDA) and glutathione (GSH) level determination; flow cytometry; and quantitative polymerase chain reaction. RESULTS: Two carbohydrates, three nucleosides, and nine quinic acid nitrogen-containing derivatives in SCBPE were identified or tentatively characterized via UPLC-QTOF MS/MS. The nine quinic acid nitrogen-containing derivatives were first reported in bee pollen. The contents of uridine, guanosine, and adenosine were 2.4945 ± 0.0185, 0.1896 ± 0.0049, and 1.8418 ± 0.0157 µg/mg, respectively. Results of in vitro experiments showed that cell survival rate, myocardial SOD activity, and GSH level significantly increased and myocardial MDA level significantly decreased in SCBPE groups compared with those in H2O2 group. Cell morphology in SCBPE groups also markedly improved compared with that in H2O2 group. Results indicated that SCBPE protected H9c2 cardiomyocytes from H2O2-induced apoptosis by downregulating the mRNA expressions of Bax, cytochrome C, and caspase-3 and upregulating the Bcl-2 mRNA expression. CONCLUSIONS: This study is the first to report that SCBPE could protect against oxidative stress injury and apoptosis in H2O2-injured H9c2 cells. Results indicated that the nucleosides and quinic acid nitrogen-containing derivatives could be the main substances that exert protective effects against H2O2-induced H9c2 cardiomyocyte injury.


Assuntos
Apoptose/efeitos dos fármacos , Isquemia Miocárdica/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Pólen/química , Schisandra/química , Animais , Abelhas , Linhagem Celular , China , Regulação para Baixo , Peróxido de Hidrogênio , Estrutura Molecular , Ratos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA