Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroinflammation ; 18(1): 77, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33752705

RESUMO

BACKGROUND: While the etiology remains elusive, macrophages and T cells in peripheral nerves are considered as effector cells mediating autoimmune peripheral neuropathy (APN), such as Guillain-Barre syndrome. By recognizing both pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) signals, TLRs play a central role in the initiation of both innate and adaptive immune responses. In this study, we aimed to understand the involvement of TLR4 in the pathogenesis of APN and explore the potential of TLR4 as a drug target for therapeutic use. METHODS: APN was induced by a partial ligation on one of the sciatic nerves in B7.2 (L31) transgenic mice which possess a predisposed inflammatory background. APN pathology and neurological function were evaluated on the other non-injured sciatic nerve. RESULTS: TLR4 and its endogenous ligand HMGB1 were highly expressed in L31 mice, in circulating immune cells and in peripheral nerves. Enhanced TLR4 signaling was blocked with TAK 242, a selective TLR4 inhibitor, before and after disease onset. Intraperitoneal administration of TAK 242 not only inhibited monocyte, macrophage and CD8+ T cell activation, but also reduced the release of pro-inflammatory cytokines. TAK 242 protected mice from severe myelin and axonal loss, resulting in a remarkable improvement in mouse motor and sensory functions. TAK 242 was effective in alleviating the disease in both preventive and reversal paradigms. CONCLUSION: The study identified the critical contribution of TLR4-mediated macrophage activation in disease course and provided strong evidence to support TLR4 as a useful drug target for treating inflammatory autoimmune neuropathy.


Assuntos
Doenças Autoimunes/fisiopatologia , Transtornos dos Movimentos/fisiopatologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Transtornos de Sensação/fisiopatologia , Receptor 4 Toll-Like/genética , Animais , Doenças Autoimunes/prevenção & controle , Doenças Autoimunes/psicologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Feminino , Proteína HMGB1/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Monócitos/efeitos dos fármacos , Transtornos dos Movimentos/prevenção & controle , Transtornos dos Movimentos/psicologia , Doenças do Sistema Nervoso Periférico/psicologia , Nervo Isquiático/lesões , Transtornos de Sensação/prevenção & controle , Transtornos de Sensação/psicologia , Transdução de Sinais , Sulfonamidas/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores
2.
J Neuroinflammation ; 17(1): 179, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32517772

RESUMO

BACKGROUND: Though it is well-known that a high-salt diet (HSD) is associated with many chronic diseases, the effects of long-term high-salt intake on physiological functions and homeostasis remain elusive. In this study, we investigated whether and how an HSD affects mouse nociceptive thresholds, and myeloid cell trafficking and activation. METHODS: Healthy C57BL/6 male and female mice were fed an HSD (containing 4% NaCl in chow and 1% NaCl in water) from the time of weaning for 3 to 4 months. Circulating monocytes, nerve macrophages, spinal microglia, and associated inflammatory responses were scrutinized using flow cytometry, immunohistochemistry, and quantitative real-time polymerase chain reaction (qPCR) approaches. Mouse pain sensitivity to mechanical stimuli was monitored with von Frey tests along the experimental duration. RESULTS: Mice on an HSD have reduced mechanical thresholds. They feel more pain than those on a normal diet (ND), e.g., regular laboratory chow (0.3% NaCl in chow). An HSD induced not only a remarkable expansion of circulating monocytes, CCR2+Ly6Chi inflammatory monocytes in particular, but also an accumulation of CD11b+F4/80+ macrophages in the peripheral nerves and an activation of Iba-1+ spinal microglia. Replacing an HSD with a ND was unable to reverse the HSD-induced mechanical hypersensitivity or rescue the altered immune responses. However, treating HSD-fed mice with a chemokine receptor CCR2 antagonist effectively normalized the pain thresholds and immune cell profile in the periphery and spinal cord. An HSD failed to alter pain thresholds and myeloid cell activation in CCR2-deficient mice. Spinal microglial activation is required for HSD-induced mechanical hypersensitivity in male, but not in female mice. CONCLUSION: Overall, this study provides evidence that an HSD has a long-term impact on physiological function. CCR2-mediated cellular response, including myeloid cell trafficking and associated inflammation, plays pivotal roles in salt-dietary modulation of pain sensitivity.


Assuntos
Quimiotaxia de Leucócito/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Receptores CCR2/metabolismo , Cloreto de Sódio na Dieta/toxicidade , Animais , Quimiotaxia de Leucócito/imunologia , Feminino , Hiperalgesia/induzido quimicamente , Hiperalgesia/imunologia , Hiperalgesia/metabolismo , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Limiar da Dor/fisiologia
3.
Mol Pain ; 14: 1744806918764979, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29546785

RESUMO

Introduction Neuropathic pain is a debilitating condition. The importance of neuroimmune interactions in neuropathic pain has been evidenced by the involvement of different immune cells in peripheral and central sensitization of pathological pain. Macrophages and microglia are the most abundant immune cells activated in injured nerves and spinal cord, respectively. Several lines of evidence showed that macrophage/microglia survival, activation, proliferation, and differentiation require the involvement of macrophage-colony stimulating factor. In this study, we investigated whether blocking macrophage-colony stimulating factor/colony stimulating factor 1 receptor signaling can be effective in relieving neuropathic pain. Materials and methods Partial sciatic nerve ligation was performed in mice to induce neuropathic pain behavior. Mice were orally treated with a selective colony stimulating factor 1 receptor inhibitor, PLX5622, daily in both preventive (two days prior to surgery until D14 post-partial sciatic nerve ligation) and reversal paradigms (D28-D33 post-partial sciatic nerve ligation). Animal neuropathic pain behavior was monitored using von Frey hairs and acetone application. Phenotype of macrophages in injured nerves was analyzed at D3 and D33 post-injury using flow cytometry analysis. The effect of PLX5622 on microglia activation in lumbar spinal cord was further examined by immunohistochemistry using Iba-1 antibody. Results Significant alleviation of both mechanical and cold allodynia was observed in PLX5622-treated animals, both in preventive and reversal paradigms. PLX5622 treatment reduced the total number of macrophages in injured nerves, it appears colony stimulating factor 1 receptor inhibition affected more specifically CD86+ (M1 like) macrophages. Consequently, the expression of various pro-inflammatory cytokines (TNF-α, IL-1ß) was reduced. Microglia activation in dorsal horn of lumbar spinal cord following partial sciatic nerve ligation was significantly inhibited with PLX5622 treatment in both preventive and reversal paradigms. Conclusion Macrophages in peripheral nerve and microglia in the spinal cord are required in the generation and maintenance of injury-associated neuropathic pain. Blocking macrophage-colony stimulating factor/colony stimulating factor 1 receptor signaling on these myeloid cells along the pain transmission pathway is an effective strategy to alleviate neuropathic pain.


Assuntos
Macrófagos/metabolismo , Microglia/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Traumatismos dos Nervos Periféricos/complicações , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Animais , Comportamento Animal , Citocinas/metabolismo , Vértebras Lombares/efeitos dos fármacos , Vértebras Lombares/patologia , Ativação de Macrófagos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Transdução de Sinais
4.
Brain Behav Immun ; 71: 142-157, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29627532

RESUMO

Autoimmune peripheral neuropathy (APN) such as Guillain Barre Syndrome (GBS) is a debilitating illness and sometimes life threatening. The molecular and cellular mechanisms remain elusive but exposure to environmental factors including viral/bacterial infection and injury is highly associated with disease incidence. We demonstrated previously that both male and female B7.2 (CD86) transgenic L31 and L31/CD4KO mice develop spontaneous APN. Here we further reveal that CD8+ T cells in these mice exhibit an effector/memory phenotype, which bears a resemblance to the CD8+ T cell response following persistent cytomegalovirus (CMV) infection in humans and mice, whilst CMV has been considered as one of the most relevant pathogens in APN development. These activated, peripheral myelin Ag specific CD8+ T cells are required for the disease initiation. While an injury to a peripheral nerve results in Wallerian degeneration in control littermates, the same injury accelerates the development of APN in other non-injured nerves of L31 mice which have a predisposed inflammatory background consisting of effector/memory CD8+ T (CD8+ TEM) cells. However, CD8+ TEM cells alone are not sufficient. A certain threshold of B7.2 expression on nerve macrophages is an additional requisite. Our findings reveal that indeed, the synergism between CD8+ TEM cells and co-stimulation competent macrophages is crucial in inducing autoimmune-mediated peripheral neuropathy. The identification of decisive molecular/cellular players connecting environmental triggers and the occurrence of APN provides opportunities to prevent disease onset, reduce relapses and develop new therapeutic strategies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Síndrome de Guillain-Barré/imunologia , Doenças do Sistema Nervoso Periférico/imunologia , Animais , Autoimunidade/imunologia , Subpopulações de Linfócitos B/imunologia , Antígeno B7-2/imunologia , Antígeno B7-2/metabolismo , Linfócitos T CD8-Positivos/fisiologia , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/fisiopatologia , Feminino , Síndrome de Guillain-Barré/fisiopatologia , Humanos , Interleucina-2 , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Nervos Periféricos/imunologia , Doenças do Sistema Nervoso Periférico/fisiopatologia
5.
Med Sci Monit ; 21: 3311-9, 2015 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-26517946

RESUMO

BACKGROUND: The value of percutaneous transluminal angioplasty and stenting (PTAS) in the context of aggressive medical treatment for severe intracranial artery stenosis (ICAS) is under debate. This study compared the effects of PTAS and aggressive medical treatment in patients with severe ICAS and transient ischemic attack or stroke. MATERIAL AND METHODS: A retrospective cohort study was performed. Patients with severe ICAS were assigned to a PTAS group or aggressive medical treatment group, according to the angiographic features of the stenotic lesions. The primary outcome was defined as stroke or death within 30 days or cerebral ischemia occurring ipsilaterally to the qualifying artery beyond 30 days. RESULTS: We included 220 patients: 48 in the PTAS group and 172 in the medical group. The median follow-up was 32 months. PTAS was not associated with an increased incidence of the primary outcomes (10/42 vs. 39/172, p=0.96) or increased risks of the secondary outcomes of stroke, cardiovascular events, major bleeding, or mortality. The results of log-rank tests did not support a significant difference in event-free survival as a primary outcome between the 2 groups (chi-square=0.07, p=0.79). Moreover, although not significantly greater, the mean survival of patients in the PTAS group appeared to be better than that among patients in the medical group, as indicated by the curve for cumulative survival. CONCLUSIONS: A suitable PTAS procedure is safe for patients with severe ICAS, and no significant differences in incidence of recurrent stroke or death were found between PTAS and aggressive medication treatment.


Assuntos
Angiografia , Angioplastia , Artérias/fisiopatologia , Ataque Isquêmico Transitório/patologia , Idoso , Infarto Encefálico , Tronco Encefálico/patologia , China , Constrição Patológica/terapia , Intervalo Livre de Doença , Feminino , Hemorragia , Humanos , Ataque Isquêmico Transitório/terapia , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Pressão , Estudos Retrospectivos , Stents , Acidente Vascular Cerebral , Resultado do Tratamento
6.
Immun Ageing ; 12: 22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26604973

RESUMO

BACKGROUND: Both aging and obesity have been recognized widely as health conditions that profoundly affect individuals, families and the society. Aged and obese people often report altered pain responses while underlying mechanisms have not been fully elucidated. We aim to understand whether spinal microglia could potentially contribute to altered sensory behavior in aged and obese population. RESULTS: In this study, we monitored pain behavior in adult (6 months) and aged (17 months) mice fed with diet containing 10 % or 60 % Kcal fat. The group of young adult (3 months) mice was included as theoretical baseline control. Compared with lean adult animals, diet-induced-obese (DIO) adult, lean and DIO-aged mice showed enhanced painful response to heat and cold stimuli, while exhibiting hyposensitivity to mechanical stimulation. The impact of aging and obesity on microglia properties was evidenced by an increased microglial cell density in the spinal cords, stereotypic morphological changes and polarization towards pro-inflammatory phenotype. Obesity strikingly exacerbated the effect of aging on spinal microglia. CONCLUSION: Aging/obesity altered microglia properties in the spinal cords, which can dysregulate neuron-microglia crosstalk and impair physiological pain signal transmission. The inflammatory functions of microglia have special relevance for understanding of abnormal pain behavior in aged/obese populations.

7.
Pain ; 164(2): e77-e90, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35587992

RESUMO

ABSTRACT: Neuropathic pain is a complex, debilitating disease that results from injury to the somatosensory nervous system. The presence of systemic chronic inflammation has been observed in patients with chronic pain but whether it plays a causative role remains unclear. This study aims to determine the perturbation of systemic homeostasis by an injury to peripheral nerve and its involvement in neuropathic pain. We assessed the proteomic profile in the serum of mice at 1 day and 1 month after partial sciatic nerve injury (PSNL) or sham surgery. We also assessed mouse mechanical and cold sensitivity in naïve mice after receiving intravenous administration of serum from PSNL or sham mice. Mass spectrometry-based proteomic analysis revealed that PSNL resulted in a long-lasting alteration of serum proteome, where most of the differentially expressed proteins were in inflammation-related pathways, involving cytokines and chemokines, autoantibodies, and complement factors. Although transferring sham serum to naïve mice did not change their pain sensitivity, PSNL serum significantly lowered mechanical thresholds and induced cold hypersensitivity in naïve mice. With broad anti-inflammatory properties, bone marrow cell extracts not only partially restored serum proteomic homeostasis but also significantly ameliorated PSNL-induced mechanical allodynia, and serum from bone marrow cell extracts-treated PSNL mice no longer induced hypersensitivity in naïve mice. These findings clearly demonstrate that nerve injury has a long-lasting impact on systemic homeostasis, and nerve injury-associated systemic inflammation contributes to the development of neuropathic pain.


Assuntos
Neuralgia , Proteômica , Camundongos , Animais , Nervo Isquiático/lesões , Neuralgia/etiologia , Hiperalgesia/metabolismo , Inflamação/metabolismo
8.
J Neurosci ; 31(30): 10819-28, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21795534

RESUMO

Peripheral nerve lesion triggers alterations in the spinal microenvironment that contribute to the pathogenesis of neuropathic pain. While neurons and glia have been implicated in these functional changes, it remains largely underexplored whether the blood-spinal cord barrier (BSCB) is also involved. The BSCB is an important component in the CNS homeostasis, and compromised BSCB has been associated with different pathologies affecting the spinal cord. Here, we demonstrated that a remote injury on the peripheral nerve in rats triggered a leakage of the BSCB, which was independent of spinal microglial activation. The increase of BSCB permeability to different size tracers, such as Evans Blue and sodium fluorescein, was restricted to the lumbar spinal cord and prominent for at least 4 weeks after injury. The spinal inflammatory reaction triggered by nerve injury was a key player in modulating BSCB permeability. We identified MCP-1 as an endogenous trigger for the BSCB leakage. BSCB permeability can also be impaired by circulating IL-1ß. In contrast, antiinflammatory cytokines TGF-ß1 and IL-10 were able to shut down the openings of the BSCB following nerve injury. Peripheral nerve injury caused a decrease in tight junction and caveolae-associated proteins. Interestingly, ZO-1 and occludin, but not caveolin-1, were rescued by TGF-ß1. Furthermore, our data provide direct evidence that disrupted BSCB following nerve injury contributed to the influx of inflammatory mediators and the recruitment of spinal blood borne monocytes/macrophages, which played a major role in the development of neuropathic pain. These findings highlight the importance of inflammation in BSCB integrity and in spinal cord homeostasis.


Assuntos
Encefalomielite Autoimune Experimental/patologia , Neuropatia Ciática/patologia , Medula Espinal/fisiopatologia , Análise de Variância , Animais , Proteínas Sanguíneas/metabolismo , Antígenos CD2/metabolismo , Complexo CD3/metabolismo , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/fisiopatologia , Encefalomielite Autoimune Experimental/prevenção & controle , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Azul Evans , Feminino , Fluoresceína , Lateralidade Funcional , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Mediadores da Inflamação/administração & dosagem , Interleucina-10/farmacologia , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologia , Isótopos de Iodo/metabolismo , Linfócitos/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microvasos/efeitos dos fármacos , Microvasos/patologia , Microvasos/fisiopatologia , Neuralgia/etiologia , Ocludina , Permeabilidade , Fosfoproteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Neuropatia Ciática/fisiopatologia , Neuropatia Ciática/prevenção & controle , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Fatores de Tempo , Proteína da Zônula de Oclusão-1
9.
Life Sci ; 306: 120788, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35817166

RESUMO

AIMS: We determined the ability of the multi-chemokine receptor (CCR2/CCR5/CCR8) antagonist RAP-103 to modulate pain behaviors in an acute model of surgical pain, with and without an added opioid (morphine), and by itself in a chronic model of Streptozotocin (STZ)-induced diabetic peripheral neuropathy (DPN). MATERIALS AND METHODS: Pain behaviors were assessed by mechanical and thermal tests in rats. Cytokine and chemokine biomarkers in sciatic nerve and spinal cord were assessed by in situ qPCR. KEY FINDINGS: In the incisional pain assay, RAP-103 (0.01-1 mg/kg, i.p.) alone had no antiallodynic effect post-surgery. RAP-103 (0.5 mg/kg) when co-administered with morphine (0.5-5 mg/kg), reduced the ED50 of morphine from 3.19 mg/kg to 1.42 mg/kg. In a DPN model, rats exhibited persistent mechanical and cold allodynia. Oral administration of RAP-103 (0.5-0.02 mg/kg/day) resulted in a complete reversal of established hypersensitivity in DPN rats (P < .001), which gradually returned to pain hypersensitivity after the cessation of the treatment. The mRNA expression of cytokines, IL-1ß, TNFα; chemokines CCL2, CCL3; and chemokine receptors CCR2 and CCR5 in DPN rat sciatic nerve, but not spinal cord, were significantly increased. RAP-103 resulted in significant reductions in sciatic nerve expression of IL-1ß, TNFα and CCL3 in STZ-induced diabetic rats with trends toward lower levels for CCL2 and CCR5, while CCR2 was unchanged. SIGNIFICANCE: In acute pain, co-administration of RAP-103 with morphine provided the same antinociceptive effect with a reduced dose of morphine, reducing opioid side-effects and risks. RAP-103 by itself is an effective non-opioid antinociceptive treatment for diabetic neuropathic pain.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Neuralgia , Animais , Ratos , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Hiperalgesia/metabolismo , Morfina/farmacologia , Morfina/uso terapêutico , Neuralgia/metabolismo , Peptídeos/uso terapêutico , Receptores de Quimiocinas , Fator de Necrose Tumoral alfa
10.
Glia ; 59(2): 231-41, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21125644

RESUMO

Activation of macrophages/microglia via toll-like receptors (TLRs) plays an important role in inflammation and host defense against pathogens. Pathogen-associated molecular patterns bind TLRs, thereby triggering NF-κB signaling and production of proinflammatory cytokines. Recent data suggest that nonpathogenic molecules resulting from trauma can also trigger inflammation via TLRs. We sought to determine whether peripheral nerve injury could induce the expression of TLR2 on the site of injury-damaged nerves and/or in the central nervous system and to investigate whether TLR2 is necessary for the development of nerve injury-induced neuropathic pain. We observed a significant increase in TLR2, IκB-α, and TNF-α mRNAs in damaged nerves. Increased inflammation-related molecules were found essentially on ED1(+) macrophages. Expression of both IκB-α and TNF-α in peripheral injured nerves was reduced in TLR2 deficient mice where the recruitment of ED1(+) cells is significantly impaired. Although after peripheral nerve injury, spinal microglia became highly activated showing an increase in Iba-1 immunoreactivity and an enlargement of their cell bodies, neither TLR2 mRNA nor IκB-α mRNA was detected in activated microglia. Nerve injury-evoked spinal microglial activation was not significantly altered in TLR2 KO mice. Paw withdrawal threshold and latency in response to mechanical and heat stimuli, respectively, decreased shortly after nerve lesion in wild type mice. In TLR2 KO mice, nerve injury-induced thermal hyperalgesia was completely abolished contrary to that seen in wild-type mice, whereas mechanical allodynia was partially reduced. We suggest that TLR2 is necessary for the development of neuropathic pain and its contribution is more important in thermal hypersensitivity than that of mechanical allodynia.


Assuntos
Encefalomielite Autoimune Experimental/patologia , Regulação da Expressão Gênica/fisiologia , Microglia/metabolismo , Neuropatia Ciática/patologia , Receptor 2 Toll-Like/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/genética , Hiperalgesia/etiologia , Hiperalgesia/genética , Hiperalgesia/patologia , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidor de NF-kappaB alfa , Medula Espinal/patologia , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
12.
Front Immunol ; 12: 720733, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484228

RESUMO

One hallmark of Guillain-Barre syndrome (GBS), a prototypic autoimmune peripheral neuropathy (APN) is infiltration of leukocytes (macrophages and T cells) into peripheral nerves, where chemokines and their receptors play major roles. In this study, we aimed to understand the potential contribution of chemokine receptors CCR2 and CX3CR1 in APN by using a well-established mouse model, B7.2 transgenic (L31) mice, which possesses a predisposed inflammatory background. We crossbred respectively CCR2KO and CX3CR1KO mice with L31 mice. The disease was initiated by partial ligation on one of the sciatic nerves. APN pathology and neurological function were evaluated on the other non-ligated sciatic nerve/limb. Our results revealed that L31/CX3CR1KO but not L31/CCR2KO mice were resistant to APN. CX3CR1 is needed for maintaining circulating monocyte and CD8+ T cell survival. While migration of a significant number of activated CD8+ T cells to peripheral nerves is essential in autoimmune response in nerve, recruitment of monocytes into PNS seems optional. Disease onset is independent of CCR2 mediated blood-derived macrophage recruitment, which can be replaced by compensatory proliferation of resident macrophages in peripheral nerve. CX3CR1 could also contribute to APN via its critical involvement in maintaining nerve macrophage phagocytic ability. We conclude that blockade of CX3CR1 signaling may represent an interesting anti-inflammatory strategy to improve therapeutic management for GBS patients.


Assuntos
Autoimunidade/genética , Receptor 1 de Quimiocina CX3C/genética , Expressão Gênica , Neurite Autoimune Experimental/etiologia , Doenças do Sistema Nervoso Periférico/etiologia , Receptores CCR2/genética , Animais , Biomarcadores , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Imunofenotipagem , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Neurite Autoimune Experimental/metabolismo , Neurite Autoimune Experimental/patologia , Doenças do Sistema Nervoso Periférico/metabolismo , Receptores CCR2/metabolismo , Nervo Isquiático/imunologia , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia
13.
Front Immunol ; 12: 765892, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630439

RESUMO

[This corrects the article DOI: 10.3389/fimmu.2021.720733.].

14.
Neurobiol Aging ; 89: 1-11, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32008855

RESUMO

Older individuals have an elevated risk for chronic pain as half of all individuals over 65 years old have at least one chronic pain condition. Unfortunately, relevant assessment tools and recommendations for chronic pain management targeting older adults are lacking. This study explores changes in response to pain between young (2-3 months old) and geriatric (20-24 months old) ages using mice. Although cutaneous thresholds to brisk stimuli (von Frey and radiant heat assays) were not affected, behavioral responses to tonic stimuli (acetone and capsaicin assays) were more pronounced in geriatric animals. After nerve injury, geriatric mice present an altered neuropathic pain profile with hypersensitivity to mechanical stimuli but not acetone and an impairment in conditioned noxious stimuli avoidance. This altered behavioral response pattern was associated with an abnormal monoaminergic signature in the medial prefrontal cortex, suggesting decreased COMT function. We conclude that young and geriatric mice exhibit different behavioral and physiological responses to the experience of pain, suggesting that knowledge and practices must be adjusted for geriatric populations.


Assuntos
Envelhecimento/fisiologia , Comportamento/fisiologia , Dor Crônica/fisiopatologia , Limiar Sensorial , Acetona , Envelhecimento/psicologia , Animais , Monoaminas Biogênicas/fisiologia , Capsaicina , Dor Crônica/etiologia , Dor Crônica/psicologia , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Traumatismos dos Nervos Periféricos/fisiopatologia , Estimulação Física , Córtex Pré-Frontal/fisiologia
15.
Cell Rep ; 30(5): 1515-1529.e4, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32023466

RESUMO

Regulatory T (Treg) cells integrate diverse environmental signals to modulate their function for optimal suppression. Translational regulation represents a favorable mechanism for Treg cell environmental sensing and adaptation. In this study, we carry out an unbiased screen of the Treg cell translatome and identify serum/glucocorticoid-regulated kinase 1 (SGK1), a known salt sensor in T cells, as being preferentially translated in activated Treg cells. We show that high salt (HS) drives thymic Treg cells to adopt a T helper type 17 (Th17)-like phenotype and enhances generation of Th17-like induced Treg cells in a SGK1-dependent manner, all the while maintaining suppressive function. Salt-mediated Th17-like differentiation of Treg cells was evident in mice fed with HS diet or injected with HS-preconditioned T cells. Overall, SGK1 enables Treg cells to adapt their function in response to environmental cues. By understanding these environmental-sensing mechanisms, we envision targeted approaches to fine-tune Treg cell function for better control of inflammation.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Inflamação/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Células Th17/imunologia , Animais , Diferenciação Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Proteínas Imediatamente Precoces/genética , Inflamação/imunologia , Intestinos/citologia , Rim/citologia , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fenótipo , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Cloreto de Sódio/farmacologia , Linfócitos T Reguladores , Células Th17/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/farmacologia
16.
Mol Pain ; 5: 16, 2009 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-19327151

RESUMO

BACKGROUND: Understanding the underlying mechanisms of neuropathic pain caused by damage to the peripheral nervous system remains challenging and could lead to significantly improved therapies. Disturbance of homeostasis not only occurs at the site of injury but also extends to the spinal cord and brain involving various types of cells. Emerging data implicate neuroimmune interaction in the initiation and maintenance of chronic pain hypersensitivity. RESULTS: In this study, we sought to investigate the effects of TGF-beta1, a potent anti-inflammatory cytokine, in alleviating nerve injury-induced neuropathic pain in rats. By using a well established neuropathic pain animal model (partial ligation of the sciatic nerve), we demonstrated that intrathecal infusion of recombinant TGF-beta1 significantly attenuated nerve injury-induced neuropathic pain. TGF-beta1 treatment not only prevents development of neuropathic pain following nerve injury, but also reverses previously established neuropathic pain conditions. The biological outcomes of TGF-beta1 in this context are attributed to its pleiotropic effects. It inhibits peripheral nerve injury-induced spinal microgliosis, spinal microglial and astrocytic activation, and exhibits a powerful neuroprotective effect by preventing the induction of ATF3+ neurons following nerve ligation, consequently reducing the expression of chemokine MCP-1 in damaged neurons. TGF-beta1 treatment also suppresses nerve injury-induced inflammatory response in the spinal cord, as revealed by a reduction in cytokine expression. CONCLUSION: Our findings revealed that TGF-beta1 is effective in the treatment of neuropathic by targeting both neurons and glial cells. We suggest that therapeutic agents such as TGF-beta1 having multipotent effects on different types of cells could work in synergy to regain homeostasis in local spinal cord microenvironments, therefore contributing to attenuate neuropathic pain.


Assuntos
Dor/tratamento farmacológico , Fator de Crescimento Transformador beta1/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Proliferação de Células/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Inflamação/tratamento farmacológico , Injeções Espinhais , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/metabolismo , Nervos Periféricos/patologia , Ratos , Ratos Sprague-Dawley , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Fator de Crescimento Transformador beta1/administração & dosagem , Fator de Crescimento Transformador beta1/farmacologia
17.
J Neurosci ; 27(45): 12396-406, 2007 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-17989304

RESUMO

Neuropathic pain resulting from damage to or dysfunction of peripheral nerves is not well understood and difficult to treat. Although CNS hyperexcitability is a critical component, recent findings challenge the neuron-centric view of neuropathic pain etiology and pathology. Indeed, glial cells were shown to play an active role in the initiation and maintenance of pain hypersensitivity. However, the origins of these cells and the triggers that induce their activation have yet to be elucidated. Here we show that, after peripheral nerve injury induced by a partial ligation on the sciatic nerve, in addition to activation of microglia resident to the CNS, hematogenous macrophage/monocyte infiltrate the spinal cord, proliferate, and differentiate into microglia. Signaling from chemokine monocyte chemoattractant protein-1 (MCP-1, CCL2) to its receptor CCR2 is critical in the spinal microglial activation. Indeed, intrathecal injection of MCP-1 caused activation of microglia in wild-type but not in CCR2-deficient mice. Furthermore, treatment with an MCP-1 neutralizing antibody prevented bone marrow-derived microglia (BMDM) infiltration into the spinal cord after nerve injury. In addition, using selective knock-out of CCR2 in resident microglia or BMDM, we found that, although total CCR2 knock-out mice did not develop microglial activation or mechanical allodynia, CCR2 expression in either resident microglia or BMDM is sufficient for the development of mechanical allodynia. Thus, to effectively relieve neuropathic pain, both CNS resident microglia and blood-borne macrophages need to be targeted. These findings also open the door for a novel therapeutic strategy: to take advantage of the natural ability of bone marrow-derived cells to infiltrate selectively affected CNS regions by using these cells as vehicle for targeted drug delivery to inhibit hypersensitivity and chronic pain.


Assuntos
Células da Medula Óssea/metabolismo , Microglia/metabolismo , Dor/metabolismo , Receptores CCR2/fisiologia , Neuropatia Ciática/metabolismo , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica/fisiologia , Macrófagos/citologia , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microglia/citologia , Dor/genética , Receptores CCR2/deficiência , Receptores CCR2/genética , Neuropatia Ciática/genética
18.
Pain ; 159(7): 1277-1288, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29533386

RESUMO

Temporomandibular disorder (TMD) is a set of heterogeneous musculoskeletal conditions involving the temporomandibular joint (TMJ) and/or the masticatory muscles. Up to 33% of the population has had at least 1 symptom of TMD with 5% to 10% of them requiring treatment. Common symptoms include limited jaw movement, joint sound, and pain in the orofacial area. Once TMD becomes chronic, it can be debilitating with comorbidities that greatly reduce one's overall quality of life. However, the underlying mechanism of TMD is unclear because of the multicausative nature of the disease. Here, we report a novel mouse model of TMD where a bite block was placed in between the upper and lower incisors such that the mouth was kept maximally open for 1.5 hours per day for 5 days. After sustained mouth opening, mice developed persistent orofacial mechanical allodynia and TMJ dysfunction. At the cellular level, we found masseter muscle dystrophy, and increased proteoglycan deposition and hypertrophic chondrocytes in the mandibular condyle. Increased F4/80 macrophages were also observed in the masseter muscles and the TMJ posterior synovium. We also found ATF3 neuronal injury and increased F4/80 macrophages in the trigeminal ganglia. Microglia activation was observed in the trigeminal subnucleus caudalis. Inhibiting macrophage and microglia activation with a colony stimulating factor-1 receptor inhibitor prevented the development of orofacial mechanical allodynia, but not TMJ dysfunction. This study suggests that mouth opening for an extended period during dental treatments or oral intubations may risk the development of chronic TMD and inflammation associated with macrophage and microglia in the tissue and trigeminal system contributes to the development of TMD pain.


Assuntos
Ativação de Macrófagos/fisiologia , Microglia/metabolismo , Boca/fisiopatologia , Transtornos da Articulação Temporomandibular/fisiopatologia , Animais , Modelos Animais de Doenças , Inflamação/metabolismo , Inflamação/fisiopatologia , Masculino , Camundongos , Boca/metabolismo , Proteoglicanas/metabolismo , Transtornos da Articulação Temporomandibular/metabolismo , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/fisiopatologia
19.
Pain ; 158(9): 1792-1801, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28746078

RESUMO

While spinal microglia play a role in early stages of neuropathic pain etiology, whether they are useful targets to reverse chronic pain at late stages remains unknown. Here, we show that microglia activation in the spinal cord persists for >3 months following nerve injury in rodents, beyond involvement of proinflammatory cytokine and chemokine signalling. In this chronic phase, selective depletion of spinal microglia in male rats with the targeted immunotoxin Mac1-saporin and blockade of brain-derived neurotrophic factor-TrkB signalling with intrathecal TrkB Fc chimera, but not cytokine inhibition, almost completely reversed pain hypersensitivity. By contrast, local spinal administration of Mac1-saporin did not affect nociceptive withdrawal threshold in control animals nor did it affect the strength of afferent-evoked synaptic activity in the spinal dorsal horn in normal conditions. These findings show that the long-term, chronic phase of nerve injury-induced pain hypersensitivity is maintained by microglia-neuron interactions. The findings also effectively separate the central signalling pathways underlying the maintenance phase of the pathology from the early and peripheral inflammatory reactions to injury, pointing to different targets for the treatment of acute vs chronic injury-induced pain.


Assuntos
Citocinas/metabolismo , Microglia/fisiologia , Neuralgia/patologia , Transdução de Sinais/fisiologia , Medula Espinal/patologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cicloexanóis/farmacologia , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Oximas/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor trkB/genética , Receptor trkB/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Saporinas , Transdução de Sinais/efeitos dos fármacos
20.
Sci Rep ; 7(1): 1671, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28490759

RESUMO

Parkinson's disease (PD) and Parkinsonism are common neurodegenerative disorders with continuously increasing prevalence, causing high global burdens. However, data concerning the comorbidity burden of patients with PD or Parkinsonism in China are lacking. To investigate the health condition and comorbidity burden, a total of 3367 PD and 823 Parkinsonism patients were included from seven tertiary hospitals in seven cities across China from 2003 to 2012. Their comorbidity burden was collected and quantified by the Elixhauser Comorbidity Index (ECI) and Charlson Comorbidity Index (CCI). The comorbidity spectra differed between PD and Parkinsonism patients. Compared with PD patients, Parkinsonism patients were older (69.8 ± 11.5 vs. 67.9 ± 11.4, P < 0.001); had a higher comorbidity burden, including ECI (1.1 ± 1.2 vs. 1.0 ± 1.2, P < 0.001) and CCI (1.3 ± 1.6 vs. 1.1 ± 1.5, P < 0.001); and had higher hospitalization expenses. The ECI (1.1 ± 1.3 vs. 0.9 ± 1.1, P < 0.001) and CCI (1.3 ± 1.6 vs. 0.9 ± 1.2, P < 0.001) were higher in males than in females. The average length of stay and daily hospitalization expenses increased with age, as did ECI and CCI. This is the first study to report the disease burden of Chinese PD and Parkinsonism patients. It provides useful information to better understand their health status, and to raise the awareness of clinicians for providing better health care.


Assuntos
Efeitos Psicossociais da Doença , Doença de Parkinson/epidemiologia , Fatores Etários , Idoso , China/epidemiologia , Comorbidade , Feminino , Hospitalização/economia , Humanos , Tempo de Internação/economia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA