RESUMO
The large-scale application of direct ethanol fuel cells has long been obstructed by the sluggish ethanol oxidation reaction at the anode. Current wisdom for designing and fabricating EOR electrocatalysts has been focused on crystalline materials, which result in only limited improvement in catalytic efficiency. Here, we report the amorphous PdCu (a-PdCu) nanomaterials as superior EOR electrocatalysts. The amorphization of PdCu catalysts can significantly facilitate the C-C bond cleavage, which thereby affords a C1 path faradic efficiency as high as 69.6%. Further tailoring the size and shape of a-PdCu nanocatalysts through the delicate kinetic control can result in a maximized mass activity up to 15.25 A/mgPd, outperforming most reported catalysts. Notably, accelerated durability tests indicate that both the isotropic structure and one-dimensional shape can dramatically enhance the catalytic durability of the catalysts. This work provides valuable guidance for the rational design and fabrication of amorphous noble metal-based electrocatalysts for fuel cells.
RESUMO
Noble metal-based nanomaterials with amorphous structures are promising candidates for developing efficient electrocatalysts. However, their synthesis remains a significant challenge, especially under mild conditions. In this paper, we report a general strategy for preparing amorphous PdM nanowires (a-PdM NWs, M = Fe, Co, Ni, and Cu) at low temperatures by exploiting glassy non-noble metal (M) nuclei generated by special ligand adsorption as the amorphization dictator. When evaluated as electrocatalysts toward formic acid oxidation, a-PdCu NWs can deliver the mass and specific activities as high as 2.93 A/mgPd and 5.33 mA/cm2, respectively; these are the highest values for PdCu-based catalysts reported thus far, far surpassing the crystalline-dominant counterparts and commercial Pd/C. Theoretical calculations suggest that the outstanding catalytic performance of a-PdCu NWs arises from the amorphization-induced high surface reactivity, which can efficiently activate the chemically stable C-H bond and thereby significantly facilitate the dissociation of HCOOH.